三、Seaborn-05-Pairplot多变量图

本文介绍如何使用 Seaborn 的 pairplot 函数绘制多种风格的配对图,包括散点图、分类变量图、回归图等,并展示了如何通过调整参数实现不同样式的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


#-*- coding:utf-8 -*-
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

seaborn.pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind='scatter', diag_kind='hist', markers=None, size=2.5, aspect=1, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None)¶

数据指定:

vars : 与data使用,否则使用data的全部变量。参数类型:numeric类型的变量list。
{x, y}_vars : 与data使用,否则使用data的全部变量。参数类型:numeric类型的变量list。
dropna : 是否剔除缺失值。参数类型:boolean, optional

特殊参数:

kind : {‘scatter’, ‘reg’}, optional Kind of plot for the non-identity relationships.
diag_kind : {‘hist’, ‘kde’}, optional。Kind of plot for the diagonal subplots.

基本参数:

size : 默认 6,图的尺度大小(正方形)。参数类型:numeric
hue : 使用指定变量为分类变量画图。参数类型:string (变量名)
hue_order : list of strings Order for the levels of the hue variable in the palette
palette : 调色板颜色
markers : 使用不同的形状。参数类型:list
aspect : scalar, optional。Aspect * size gives the width (in inches) of each facet.
{plot, diag, grid}_kws : 指定其他参数。参数类型:dicts

返回:

PairGrid 对象

1、散点图


sns.set(style="ticks", color_codes=True)
iris = sns.load_dataset("iris")
g = sns.pairplot(iris)

05_01.png

2、指定分类变量的,散点图

g2 = sns.pairplot(iris, hue="species")

05_05.png

使用调色板

g3 = sns.pairplot(iris, hue="species", palette="husl")

05_06.png

使用不同的形状

g4 = sns.pairplot(iris, hue="species", markers=["o", "s", "D"])

05_07.png

3、改变对角图

使用 KDE

g5 = sns.pairplot(iris, diag_kind="kde")

05_03.png

使用回归

g6 = sns.pairplot(iris, kind="reg")

05_04.png

4、改变点形状,使用参数,使用 edgecolor


g7 = sns.pairplot(iris, diag_kind="kde", markers="+",
                  plot_kws=dict(s=50, edgecolor="b", linewidth=1),
                  diag_kws=dict(shade=True))

05_02.png

 


原出处:https://www.jianshu.com/p/6e18d21a4cad

 

### Seaborn `pairplot` 函数详解 Seaborn 是基于 Matplotlib 的高级接口绘库,提供了更丰富的数据可视化功能。其中 `pairplot()` 方法用于绘制成对关系,可以快速查看多个变量之间的两两分布情况以及它们与分类标签的关系。 #### 参数说明 - **data**: DataFrame 类型的数据集。 - **hue**: 字符串 (可选),指定按哪个列名进行分组着色,默认为 None。 - **palette**: 颜色调板名称或字典 (可选), 设置不同类别的颜色方案。 - **markers**: 可迭代对象或单个标记样式字符串(可选),设置不同类型点使用的形符号。 - **diag_kind**: {'auto', 'hist', 'kde'} 或 callable, 控制对角线上的表类型;默认是 "scatter" 对于离散变量则是 "hist"[^2]。 #### 示例代码展示 下面是一个具体的例子来演示如何使用 seaborn 库中的 pairplot 函数: ```python import seaborn as sns import matplotlib.pyplot as plt # 加载内置鸢尾花数据集作为示范 iris = sns.load_dataset('iris') # 创建配对网格并填充子 g = sns.pairplot( data=iris, hue="species", # 使用 species 列的不同取值区分不同的类别 palette="Set2", # 设定色彩盘 markers=["o", "s", "D"], # 定义种形状代表种类别 diag_kind="hist" # 在对角线上显示直方而不是散点 ) plt.show() ``` 此段代码会生成一个由四个属性构成的矩阵形式像,在非对角位置上展示了各属性间的关系,并通过不同颜色表示样本所属物种;而在对角线上则呈现了各个特征自身的频率分布状况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值