矩阵化为行最简形矩阵计算器_22、正定矩阵、正定二次型、半负定

本文详细介绍了正定矩阵的定义和性质,包括正定矩阵的四个判定条件,以及如何将其转化为二次型。同时,解释了半正定矩阵的概念,并提供了判断正定二次型的计算方法——配方法。此外,还探讨了正定矩阵的合同矩阵仍为正定的性质,以及正定矩阵的顺序主子式与正惯性的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是上一章21二次型的续章节。二次型(下)。

本文重点介绍正定矩阵和正定二次型。内容简单,阅读时间四十五分钟内。

本章参考视频有,厦门大学—高等代数、清华—线性代数(马辉)、麻省理工—线性代数

本人只记录实用的,不会所有都写进去。

正定矩阵虽然之前19章已经提到过,但具体的判定要需要学习。

1、正定矩阵A是对称矩阵中的一种。其特点是:

(1)A的所有特征值都是正的

(2)矩阵A行最简的主元都是正的。也就是对角阵是正的,对角元也是正的。
(3)正定矩阵A化为二次型后,

(4)

,并且行列式detA>0

以上4条,只要任意一条成立(其它三条也必然成立),即可以认为在对称矩阵的前提下,这个对称矩阵是“正定矩阵”。

注意:

可以将

x写为[x1,x2,...,xn]

xT写为:

x1

x2

...

xn

然后这两个向量再和A左右相乘。

但其实 运用上一章二次型的方法,“将A矩阵去写成二次型方程”,就是

比如:A矩阵为

2 6

6 20

转为二次型为

这个二次型刚好等于用三个矩阵相乘

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值