最邻近方法nn_kNN最邻近规则分类

本文介绍了k-NN最近邻规则算法的原理,通过一个推荐手机的例子展示了算法的应用。讨论了如何选择合适的k值,指出欧几里得公式作为距离度量函数的局限性,并给出一个简单的数据集来演示不同k值下的误差率。此外,文章还提出了k-NN算法的优化方法,包括裁剪训练样本、建立搜索树和属性降维法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理介绍:

这一个月来恶补了一下大学的数学知识,把高数、线代、概率论、复变函数和积分变换又温习了一遍,大学里学的差一点就忘光了。大学时每次上数学课可都是昏昏欲睡啊!哈哈!学习人工智能中关于分类的知识,碰到很多数学描述都看不太懂,才意识到自己的数学在不拾一拾就剩加减乘除了。

一个同事,也是搞C++ 的,对预测彩票非常感兴趣。我们认为这是个数学问题。做游戏开发,碰到数学问题还真不多,大部分都是逻辑问题,如A打伤了B,B打死了C诸如此类。然后提到如何实现通过程序为人们推荐手机,发现主要也是数学问题。总结来,在日常的软件开发中,主要涉及逻辑控制和数学建模两大部分,为了实现逻辑控制,我们精通编程语法,熟记API,优雅的涉及模块和类,高效的传输和存储数据。是的,这确实已经是很复杂的学问了。但对于我们来说,数学问题更让人着迷。

其实今天是要记录一下k-NN最近邻规则算法的。最近养成了一个习惯,将一个数学模型掌握以后,应用到一个例子中,并把它用Blog记录下来。K-NN是一种非常朴素的分类算法,但是在步入正题之前,还是要抛个转。

比如要实现一个模型为人人们推荐购买哪一款手机。为简化模型我们只基于协同过滤做推荐(洒家也是在推荐系统论坛长期潜水之人,常用的推荐策略还是略知一二的)。举个例子,已知A、B二人,A是月薪15k年龄28的帅哥,而B是月薪3K的年龄23的实习生,还知道A购买了Iphone, 而B购买了小米。如果C是月薪13K年龄27,那么你十分有可能和A进行相同的选择,也去购买Iphone。数学上认为C的函数值更解决于A。这就是k-NN最近邻规则的思想,找到和目标属性最接近的样本,并把它们归为同一类别。物以类聚,人以群分嘛。

如果已知100 个各个收入阶层、各个年龄段的手机购买数据,把其作为训练样本,从中选择一个和目标情况最为接近的一个样本,并把该样本使用的手机推荐给目标,这种分类方法称之为1-NN最近邻规则。进行推广之,从100 人中选出5个最接近目标情况的样本,并把他们使用最多的一款手机推荐给目标,则称之为k-NN最近邻规则,此时k=5。

设计k-NN最近邻规则时,最重要的是确定k值和设计计算样本之间距离(或相似度)的度量函数。

首先说计算k值。有时可以根据经验。比如上面推荐手机的例子,k=1 显然不合适,比如月薪20k的大牛可能就喜欢android,非要买个三星也是有的,如果目标和此大牛情况相近就会被推荐三星,但是实际上这一类人大部分都在使用iphone。而若选择5,那么虽然这个大牛使用了三星,但是其他四个人都是使用iphone,那么系统仍然会推荐iphone,这就非常符合现实情况了。但是k值又不能太大,太大计算量增大,并且有可能会出现给一个20k的大牛推荐山寨机的结果。更科学的方法是尝试几种最有可能的k值,计算该k值下的误差率,选择误差率最小k值。

下面再说一下如何计算两个样本之间的距离,即确定一个度量函数D。任意两个样本a、b,D(a, b) 得到a、b之间的距离。而a样本又有各个属性,数学表示X=(x1, x2,…..)。最简单计算距离的方法是欧几里得公式:

但是欧几里得法有一个缺陷,若属性的单位发生变化,可能会影响原来各个样本之间的相对距离。如把月薪20k改成月薪20000那么可能会造成原来A更接近于B,但是变成A更接近于C。这里也能说明k值不宜选的太小。

下面附一个小示例:

已知20个样本:

样本

月收入

年龄

手机

1

2k

18

Iphone6

…….

10

5k

23

小米

……

50

10k

25

Iphone

又已知10个测试样本:

样本

月收入

年龄

手机

1

6k

22

三星

…….

2

9k

25

Iphone

距离度量函数选择欧几里得公式,不同的K值测试的误差对比如下:

K值

1

2

3

4

5

6

7

8

9

误差率

19%

19%

10%

28%

19%

28%

28%

28%

28%

所以选择K值为3,

运行代码如下:

train_data =[]

test_data=[]definit_data():

f= open("train_data.txt")

dest=train_datafor line inf.readlines():if len(line) ==0:continue

if line[0] == '#':if -1 != line.find('test_data'):

dest=test_datacontinueline_array=line.strip().split()if len(line_array) == 3:

line_array[0]=float(line_array[0])

line_array[1] = int(line_array[1])

line_array.append(0)

dest.append(line_array)

f.close()defselect_k_neighbour(k, income, age):defmy_cmp(E1, E2):return -cmp(E2[3], E1[3])

distance=[]for item intrain_data:

income2=item[0]

age2= item[1]

item[3] = (income - income2) * (income - income2) + (age - age2) * (age -age2)

distance.append(item)

distance.sort(my_cmp)

select_k={}for k inrange(0, k):

phone= distance[k][2]if False ==select_k.has_key(phone):

select_k[phone]= 1

else:

select_k[phone]= select_k[phone] + 1ret_phone= ''max=0for k inselect_k:if select_k[k] >max:

max=select_k[k]

ret_phone=kreturnret_phonedefknn_train(k):

right= 0.0wrong= 0.0

for item intest_data:

income=item[0]

age= item[1]

phone= item[2]

ret_phone=select_k_neighbour(k, income, age)if ret_phone ==phone:

right= right + 1

else:

wrong= wrong + 1

return right / (right +wrong)

init_data()print("train_data", train_data)print("test_data", test_data)

ret=[]for i in range(0, 10):

rate= 1 - float(int(knn_train(i+1) * 100 )) / 100ret.append(str(rate))print('')print(ret)

数据文件为:

#train_data#income age phone2 20N3 21M3 22N3.5 22N4 23M4 24M5 24M5.5 25M6 25M7 26I7.5 25M7.5 28I8 27I9 27I10 29I11 28M12 27I13 28M14 30I15 30I16 30I#test_data2.5 23N3 24M3.5 24N4 25M4.5 26M5.5 26M6 27I7 26M8 28I9 30I12 31I

k-NN 算法的优化:

很显然的一个问题是k-NN要求遍历所有的训练样本,若训练样本非常庞大,那么计算量可能是不能接受的。针对k-NN算法的优化方法有:

裁剪训练样本

既然训练样本太多,那么我们就把训练样本比较接近的合并成一项,如月薪10k-12k的统一化为10k之类,减少训练样本数量。

建立搜索树

思想就是先分几个大类,在再小类中找相似的,如>10k的在某一类别中,那么一次可以淘汰N多不太可能的计算。

属性降维法

本文中只选择了收入和年龄作为人的属性,实际让远远应比此大的多的多,在遍历训练样本时,可以从中选择有代表性的属性用于计算,或者可以通过变换减少属性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值