lasso最小角_最小角回归法(Least Angle Regression)求解Lasso 回归算法

本文介绍了最小角回归(Least Angle Regression, LARS)算法,它是Lasso回归的一种高效求解方法。LARS通过逐步加入相关度最高的特征,沿着特征间的角平分线前进,直到所有变量都被考虑或残差足够小。该算法结合了前向选择和前向梯度算法的特点,能有效找到Lasso回归的解。" 103683287,9155444,Hive 数据类型与DDL/DML操作详解,"['大数据开发', 'Hadoop', 'SQL', '数据仓库']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引用:http://www.cnblogs.com/pinard/p/6018889.html

最近在学习机器学习的相关框架,看到最小角回归理解了一下:

在介绍最小角回归算法前,我们需要了解两个相关算法,一个是前向选择算法(Foward Selection),一个是前向梯度算法(Forward Statgewise)。

1.前向选择算法(Foward Selection)

假设有Y=Xθ,X为m*n的矩阵,Y为m*1的矩阵,我们要找到一个θ,最大程度的拟合输入和输出。

这里把X看成n个m*1的的向量Xi。

第一步:选择和目标Y最为接近的Xi(余弦相似度),记为Xk。

过Y向Xk向量做投影,投影的长度便作为Xk对应的系数,记为θk。

第二步:定义(残差)Y‘=Y-Xk*θK

若Y‘把所有的自变量都投影完毕,或者Y'为0,结束算法。

否则投影后的Y‘被设为新的目标Y,重复第一步。

图示引荐如下:

上图为Y在X1,X2上的分解,对应的θ即为要求解的系数。

2.前向梯度算法(Forward Stagewise)

同前向选择方法不同的一点是,θk的取值是人为设定的,每次θk会有一个初始值设为w,

计算残差Y‘=Y-Xk*w,再根据Y’去找相似度最大的向量Xi。

引图如下:

如上图Y沿着x1方向,行走εx1时,就会停下来计算残差,再判断究竟与x1的相似度还是与x2的相似度大,然后继续走下去。

3.最小角回归(Least Angle Regression, LARS)算法

首先,还是找到与因变量Y最接近或者相关度最高的自变量Xk,使用类似于前向梯度算法中的残差计算方法,得到新的目标Y',此时不用和前向梯度算法一样小步小步的走。而是直接向前走直到出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值