python数据包分析_python | 数据分析(一)- Numpy数据包

本文主要围绕Python的numpy包展开,介绍了数组和矩阵的操作。数组操作包括创建、元素访问、长度获取、转置、添加、删除、去重等;矩阵操作涵盖创建、元素类型设置、大小和维度获取、切片、比较等内容,旨在梳理知识和笔记。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 导入numpy包

import numpy as np

"""

*****************

一、数组操作

*****************

"""

#创建数组

a = np.array(1, 2, 3)

np.asarray(a, dtype = None, order = None) #按现有数据创建数组

np.arange(start = 0, stop, step = 1, dtype)

#数组操作

a[1] #元素访问

len(a) #长度

ndarray.T #转置

np.append(arr, values, axis) #添加

np.insert(arr, idx, values, axis)

np.split(ary, indices_or_sections, axis) #分割, 第二项的值为整数则表明要创建的等大小的子数组的数量,是一维数组则表明要创建新子数组的点。

np.delete(arr, values, axis) #删除

np.unique(arr, return_index, return_inverse, return_counts) #去重

np.sin(arr) #三角函数

np.arround(arr) #四舍五入

np.amin(arr, axis) #最小值

np.str(arr) #标准差

np.ceil(arr) #向下取整

"""

*****************

二、矩阵操作

*****************

"""

# 创建矩阵

a = np.array([1,2,3],[4,5,6])

a = np.arange(8).reshape(2,4)

# 设置和查看数组元素类型

d = nparray(a, dtype=np.float)

d.type

# 获取矩阵大小

a.shape

a.shape[1] #某一维

# 矩阵维度

a.ndim

# 调整维度

a.reshape((2,4))

# 访问

a.flat[i]

# 创建0矩阵

a = zeros(5, int8)

a = zeros([2,3])

# 创建1和空矩阵

a = ones()

a = empty()

# 创建对角矩阵

np.diag((1, 2, 3))

# 提取矩阵x对角元素的值

np.diag(x)

# 用函数创建矩阵fromfunction

def func(i):

return i * 2

a = fromfunction(func, (5,)) #一维

a = fromfunction(func, (10,10)) #二维

# 矩阵切片

b[start, stop, step]

# 多维数组切片

b[0, (2:4)] # 二维数组 b[行号, (起:止)]

b[2:4, 2:4] # 行号也可切片

b[: ,3] #读取第三列,逗号前只有一个冒号,表示所有

b[::2, ::2] #加步长

#比较矩阵a和b

(a==b).all() #所有元素

(a==b).any() #对应元素是否有一个

# tile重复某个数组/矩阵

tile(a, n)

tile(a, (2, 1)) #二维数组

备注:目前写博客是为了进行知识和笔记梳理。博客本身可能还存在着一些错误,如有发现,请求斧正,谢谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值