最优服务次序问题
设有n个顾客同时等待同一项服务。顾客i需要的服务时间为ti,1<=iv=n 应如何安排n个顾客的服务次序才能使平均等待时间达到最小?平均等待时间 是n个顾客等待服务时间的总和除以 n。
参考答案
一、最优服务次序问题
二、运行环境(软、硬件环境)
运行软件:Window7 64位
硬件:华硕PC机
编写程序:C++语言
编译环境:VC++6.0
三、算法设计的思想
首先,要使n个顾客平均等待时间最小,即为:让 n个顾客等待服务时间总 和最小。因为,平均等待时间=等待服务时间总和/n。
接着,由于每个顾客i的服务时间为ti,要实现等待服务时间总和最小,应 该尽可能安排ti值小的顾客,进行服务。
因此,本题属于局部最优的设计问题,即为贪心算法。
四、算法的流程图
五、算法设计分析
假设原问题的时间为T,已经知道了某个最优服务系列,最优解为min={t(1), t(2),……,t(n)}(其中t(i)为第i个客户需要的服务时间),那么每个客户需要的 等待是时间为:
T(1)=t(1);
T(2)=t(1)+t(2);
T(n)=t(1)+t(2)+……+t(n);
那么,总的等待时间,即为最优解
T min=n*t(1)+(n-1)*t(2)+(n-2)*t(3)……+(n+1-i)*t(i)+……+2*t( n-1)+1*t( n);
由于,平均等待时间是n个顾客等待时间总和除以n,则本题转化为求使得 顾客等待时间总和最小的服务次序问题。
六、源代码
#includevfstream . h>
#include
#include
#include
long n=-1 ;//顾客数为n
long *wait ;〃顾客各自等待时间wait
void in putData ()
{〃输入数据n,等待时间wait
ifstream fin ;
fin . open(*input . txt ,‘ los::nocreate);
if(!fi n){
cout<< “ File Open ErroF<
return;
}
fin?n ;
wait==new long[n];
for(1ong i=0 ; i
{
fin>>wait[i];
)
fin . close0;
}
void ShellSort(lo ng *x)
(//Shell排序,实现数据从小到大排序
long i , j, temp. gap=n/2;
while(gap>0){
for(i=gap ; i
j=i-gap ;
while(j>=0){
if(x[j]>x[j+gap])
{
temp=x[j] ; x[j]=x[j+gap] ; x[j+gap]=temp ;〃实现大小交换
j=j-gap ;
}
else{j=-1 ; }
}
}
gap=gap/ 2 ;
}
}
/ **
函数名:AveWaitO
描述:计算平均等待时问
参数:各顾客等待时间
** / double AveWait(lo ng *x)
{
double ave=0.0;
ShellSort(x);
for(long i=0 ; i
{
ave+=1.0*( n-i)*x[i];
}
ave/ =n ;〃求平均等待时间
retur n ave;
)
void outputData(double out)
(//输出结果
ofstream fout;
fout. open("output. txt");
fout<
<
fout. close0;
)
void mai n0
{//主调函数
inputData();
if(n !=-1)(
double avewait=AveWait(wait);
outputData(avewait):
}
}
七、运行结果分析
试验结果:
in put. txt:
12 56 22 l9 90 1002 234 33 45 97 810
output. txt:
532. 00
八、收获及体会
本题将顾客平均等待时间最小,转化为服务等待时间总和最小。利用局部最 优,通过贪心算法来解决该题。
通过本题,也更深入了解贪心算法的本质,今后对于其他类似的局部最优问 题、最优子结构问题,都可米用贪心算法解决。