如何对散列查找进行asl分析计算?_8.4 计算式查找法——哈希式

本文详细介绍了哈希表的基本概念、哈希函数构造方法、处理冲突的技术以及哈希表的查找过程。并通过实例展示了不同冲突解决策略的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

25720913-8612-eb11-8da9-e4434bdf6706.png

返回目录:

Chilan Yu:《数据结构》目录链接​zhuanlan.zhihu.com
26720913-8612-eb11-8da9-e4434bdf6706.png

哈希法又称散列法、杂凑法以及关键字地址计算法等,相应的表称为哈希表。

哈希法的基本思想

首先在元素的关键字k和元素的存储位置p之间建立一个对应关系f,使得p=f(k),f称为哈希函数。创建哈希表时,把关键字为k的元素直接存入地址为f(k)的单元;以后当查找关键字为k的元素时,再利用哈希函数计算出该元素的存储位置p=f(k),从而达到按关键字直接存取元素的目的。

冲突问题:

当关键字集合很大时,关键字值不同的元素可能会映像到哈希表的同一地址上,即

,但
,这种现象称为冲突,此时称
为同义词。

综上所述,哈希法主要解决两方面的问题:如何构造哈希函数以及如何处理冲突。


8.4.1 哈希函数的构造方法

构造原则:

  • ①函数本身便于计算;
  • ②计算出来的地址分布均匀,即对任一关键字k,f(k) 对应不同地址的概率相等,目的是尽可能减少冲突。

1. 数字分析法:

如果事先知道关键字集合,并且每个关键字的位数比哈希表的地址码位数多时,可以从关键字中选出分布较均匀的若干位,构成哈希地址。

例如,有80个记录,关键字为8位十进制整数

,如哈希表长度取为100,则哈希表的地址空间为0~99。假设经过分析,各关键字中
的取值分布较均匀,则哈希函数为

例如,H(81301367)=06,H(81346532)=43。相反,经过分析,各关键字中

的取值分布极不均匀,
都等于5,
都等于2,此时如果哈希函数为
,则所有关键字的地址码都是52,显然这是不可取的。

2. 平方取中法:

当无法确定关键字中哪几位分布较均匀时,可以先求出关键字的平方值,然后按需要取平方值的中间几位作为哈希地址。

例如,把英文字母在字母表中的位置序号作为该英文字母的内部编码,K的内部编码为11,E的内部编码为05,Y的内部编码为25,A的内部编码为01,B的内部编码为02。由此组成关键字“KEYA”的内部代码为11052501,同理可得到关键字“KYAB”、“AKEY”、“BKEY”的内部编码。之后对关键字进行平方运算后,取出第7到第9位作为关键字哈希地址,如表所示。

27720913-8612-eb11-8da9-e4434bdf6706.png

3. 分段叠加法:

这种方法是按哈希表地址位数将关键字分成位数相等的几部分(最后一部分可以较短),然后将这几部分相加,舍弃最高进位后的结果就是该关键字的哈希地址。具体方法有折叠法与移位法。

例如,key=12360324711202065,哈希表长度为1000,则应把关键字分成3位一段,在此舍去最低的两位65,分别进行移位叠加折叠叠加,求得哈希地址为105和907,如图所示。

28720913-8612-eb11-8da9-e4434bdf6706.png

4. 除留余数法:

假设哈希表长为m,p为小于等于m的最大素数,则哈希函数为: H(k)=k%p其中%为模p取余运算。

例如,已知待散列元素为(18,75,60,43,54,90,46),表长m=10,p=7,则有

此时冲突较多。为减少冲突,可取较大的m值和p值,如m=p=13,结果如下:

此时没有冲突,如图8.27所示。

29720913-8612-eb11-8da9-e4434bdf6706.png

5. 伪随机数法:

采用一个伪随机函数做哈希函数,即h(key)=random(key)。

在实际应用中,应考虑的因素有:

a. 计算哈希函数所需时间 (简单)。
b. 关键字的长度。
c. 哈希表大小。
d. 关键字分布情况。
e. 记录查找频率。


8.4.2 处理冲突的方法

1. 开放定址法 (再散列法 )

基本思想

当关键字key的初始哈希地址

出现冲突时,以
为基础,产生另一个哈希地址
,如果
仍然冲突,再以
为基础,产生另一个哈希地址
,…,直到找出一个不冲突的哈希地址
,将相应元素存入其中。

这种方法有一个通用的再散列函数形式:

或等价写为

其中

为哈希函数,
,m为表长,
称为
增量序列

增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:

(1)线性探测再散列

特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。

(2)二次探测再散列

特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。

(3)伪随机探测再散列

具体实现时,应建立一个伪随机数发生器。

例:已知哈希表长度m=12,哈希函数为

,则
,假设下一个关键字为69,则
,与47冲突。

(1)如果用线性探测再散列处理冲突,下一个哈希地址为

,仍然冲突,再找下一个哈希地址为
,还是冲突,继续找下一个哈希地址为
,此时不再冲突,将69填入6号单元,如图(a)所示。

(2)如果用二次探测再散列处理冲突,下一个哈希地址为

,仍然冲突,再找下一个哈希地址为
,此时不再冲突,将69填入2号单元,如图(b)所示。

(3)如果用伪随机探测再散列处理冲突,且伪随机数序列为2,5,9,…,则下一个哈希地址为

,仍然冲突,再找下一个哈希地址为
,此时不再冲突,将69填入8号单元,如图(c)所示。

2a720913-8612-eb11-8da9-e4434bdf6706.png

从上述例子可以看出,线性探测再散列容易产生“二次聚集”,即在处理同义词的冲突时又导致非同义词的冲突。

线性探测再散列的优点是:只要哈希表不满,就一定能找到一个不冲突的哈希地址,而二次探测再散列和伪随机探测再散列则不一定。

如果要在上述哈希表中删除一个记录,则需要在该记录的位置上填入一个特殊记录,否则将无法找到在其后填入的同义词记录。

2. 再哈希法

基本思想

同时构造多个不同的哈希函数:


当哈希地址
发生冲突时,再计算
……直到冲突不再产生。

这种方法不易产生聚集,但增加了计算时间。

3. 链地址法

基本思想

将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。

例:已知一组关键字(32,40,36,53,16,46,71,27,42,24,49,64),哈希表长度为13,哈希函数为

,给出用链地址法处理冲突的结果,计算平均查找长度,如图8.29所示。

2b720913-8612-eb11-8da9-e4434bdf6706.png

平均查找长度

4. 建立公共溢出区

【基本思想】

将哈希表分为基本表溢出表两部分,凡是和基本表发生冲突的元素一律填入溢出表。


8.4.3 哈希表的查找过程

算法思想

当查找关键字为K的元素时:

  • (1)首先计算
  • (2)如果单元
    为空,则所查元素不存在;
  • (3)如果单元
    中元素的关键字为K,则找到所查元素;
  • (4)否则重复下述解决冲突的过程:
    a. 按解决冲突的方法,找出下一个哈希地址

    b. 如果单元
    为空,则所查元素不存在;

    c. 如果单元
    中元素的关键字为K,则找到所查元素。

8.4.4 哈希法性能分析

由于冲突的存在,哈希法仍需要进行关键字比较,因此,需用平均查找长度来评价哈希法的查找性能。

哈希法中影响关键字比较次数的因素有三个:哈希函数处理冲突的方法以及哈希表的装填因子。哈希表的装填因子α的定义如下:

α可描述哈希表的装满程度。显然,α越小,发生冲突的可能性越小,而α越大,发生冲突的可能性也越大。

例:已知一组关键字序列(19,14,23,01,68,20,84,27,55,11,10,79),给出按哈希函数

和线性探测处理冲突构造所得哈希表ht[0…15]。

如图所示,其中,每个关键字下面带圈的数字,是放置该关键字时所进行的地址计算次数,或者说是放置该关键字时所进行的关键字比较次数(同时也是查找该关键字时所进行的关键字比较次数)。

2c720913-8612-eb11-8da9-e4434bdf6706.png

查找19时,通过计算H(19)=6,ht[16]=19,查找成功。则查找关键字19,仅需要计算一次地址就可以找到。

查找01时,通过计算H(01)=1,ht[1]=14,但14不等于01,则找第一次冲突处理后的地址

;此时,ht[2]=01,查找成功,因此查找关键字01时,需要计算第二次地址才可以找到。

查找55时,通过计算H(55)=3,ht[3]=68,但68不等于55,则找第一次冲突处理后的地址

;此时,ht[4]=27,但27不等于55,则第二次冲突后处理地址
;此时,ht[5]=55,查找成功,因此查找关键字55时,需要计算三次地址才能找到。

(1)手工计算等概率情况下查找成功的平均查找长度公式

其中,

为查找第i个元素时所需的比较次数(即置入第i个元素时所需的比较次数)。

因此,对图8.30采用线性探测再散列法处理冲突的哈希表,可计算出在等概率情况下其查找成功的平均查找长度为

(2)手工计算在等概率情况下查找不成功的平均查找长度公式

其中,

为哈希函数取值为i时查找不成功的比较次数。

查找不成功的情况分两种,一种是遇到空单元,另一种是按解决冲突的方法完全探测一遍后仍未找到。0到r-1相当于r个不成功查找的入口,从每个入口进入后,直到确定查找不成功为止,其关键字的比较次数就是与该入口对应的不成功查找长度

因此,对图8.30采用线性探测再散列法处理的哈希表,可计算出在等概率情况下其查找不成功的平均查找长度为


返回目录:

Chilan Yu:《数据结构》目录链接​zhuanlan.zhihu.com
26720913-8612-eb11-8da9-e4434bdf6706.png
#include #include typedef struct node { int data; struct node *next; }node; init_hash(node **A,int n) { int i; for(i=0;idata=0; A[i]->next=NULL; } } insert_hash(node **A,int value,int n) { int key; node *p,*q; key=value%n; if(A[key]->next!=NULL) { p=A[key]->next; while(p->next!=NULL) p=p->next; q=(node *)malloc(sizeof(node)); q->data=value; q->next=NULL; p->next=q; } else { q=(node *)malloc(sizeof(node)); q->data=value; q->next=NULL; A[key]->next=q; } } int search_hash(node **A,int value,int n) { int key; node *p; key=value%n; if(A[key]->next==NULL) return 0; else { p=A[key]->next; while(p!=NULL) { if(p->data==value) return 1; } return 0; } } delete_hash(node **A,int value,int n) { int key; node *p,*q; key=value%n; p=A[key]; q=A[key]->next; while(q->data!=value) { p=q; q=q->next; } p->next=q->next; free(q); } print_hash(node **A,int n) { int i; node *p; for(i=0;inext!=NULL) { p=A[i]->next; while(p!=NULL) { printf("%d ",p->data); p=p->next; } } } printf("\n"); } main() { int i,n,value,Case; node **A; printf("输入待排序元素个数:\n"); scanf("%d",&n); A=(node **)malloc(sizeof(node*)*n); //申请一个指针型数组A[n] init_hash(A,n);//初始化数组A printf("输入hash表的值(空格键分开):\n"); for(i=0;i<n;i++) //建hash表 { scanf("%d",&value); insert_hash(A,value,n); } printf("请选择hash表的操作\n1.查询\t2.插入\t3.删除\t4.输出\n"); scanf("%d",&Case); switch(Case) { case 1: { printf("请输入要查询的元素:"); scanf("%d",&value); printf(search_hash(A,value,n)?"Success!\n":"Failure!\n"); //查询 } case 2: { printf("请输入要插入的元素:"); scanf("%d",&value); insert_hash(A,value,n); //插入 } case 3: { printf("请输入要删除的元素:"); scanf("%d",&value); printf(search_hash(A,value,n)?"删除成功!\n":"表中不存在该元素!\n"); delete_hash(A,value,n); } case 4: //输出 { printf("表中元素为:\n"); print_hash(A,n); } } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值