
返回目录:
Chilan Yu:《数据结构》目录链接zhuanlan.zhihu.com
哈希法又称散列法、杂凑法以及关键字地址计算法等,相应的表称为哈希表。
哈希法的基本思想:
首先在元素的关键字k和元素的存储位置p之间建立一个对应关系f,使得p=f(k),f称为哈希函数。创建哈希表时,把关键字为k的元素直接存入地址为f(k)的单元;以后当查找关键字为k的元素时,再利用哈希函数计算出该元素的存储位置p=f(k),从而达到按关键字直接存取元素的目的。
冲突问题:
当关键字集合很大时,关键字值不同的元素可能会映像到哈希表的同一地址上,即
综上所述,哈希法主要解决两方面的问题:如何构造哈希函数以及如何处理冲突。
8.4.1 哈希函数的构造方法
构造原则:
- ①函数本身便于计算;
- ②计算出来的地址分布均匀,即对任一关键字k,f(k) 对应不同地址的概率相等,目的是尽可能减少冲突。
1. 数字分析法:
如果事先知道关键字集合,并且每个关键字的位数比哈希表的地址码位数多时,可以从关键字中选出分布较均匀的若干位,构成哈希地址。
例如,有80个记录,关键字为8位十进制整数
例如,H(81301367)=06,H(81346532)=43。相反,经过分析,各关键字中
2. 平方取中法:
当无法确定关键字中哪几位分布较均匀时,可以先求出关键字的平方值,然后按需要取平方值的中间几位作为哈希地址。
例如,把英文字母在字母表中的位置序号作为该英文字母的内部编码,K的内部编码为11,E的内部编码为05,Y的内部编码为25,A的内部编码为01,B的内部编码为02。由此组成关键字“KEYA”的内部代码为11052501,同理可得到关键字“KYAB”、“AKEY”、“BKEY”的内部编码。之后对关键字进行平方运算后,取出第7到第9位作为关键字哈希地址,如表所示。

3. 分段叠加法:
这种方法是按哈希表地址位数将关键字分成位数相等的几部分(最后一部分可以较短),然后将这几部分相加,舍弃最高进位后的结果就是该关键字的哈希地址。具体方法有折叠法与移位法。
例如,key=12360324711202065,哈希表长度为1000,则应把关键字分成3位一段,在此舍去最低的两位65,分别进行移位叠加和折叠叠加,求得哈希地址为105和907,如图所示。

4. 除留余数法:
假设哈希表长为m,p为小于等于m的最大素数,则哈希函数为: H(k)=k%p其中%为模p取余运算。
例如,已知待散列元素为(18,75,60,43,54,90,46),表长m=10,p=7,则有
此时冲突较多。为减少冲突,可取较大的m值和p值,如m=p=13,结果如下:
此时没有冲突,如图8.27所示。

5. 伪随机数法:
采用一个伪随机函数做哈希函数,即h(key)=random(key)。
在实际应用中,应考虑的因素有:
a. 计算哈希函数所需时间 (简单)。
b. 关键字的长度。
c. 哈希表大小。
d. 关键字分布情况。
e. 记录查找频率。
8.4.2 处理冲突的方法
1. 开放定址法 (再散列法 )
【基本思想】
当关键字key的初始哈希地址
这种方法有一个通用的再散列函数形式:
或等价写为
其中
增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:
(1)线性探测再散列
其特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。
(2)二次探测再散列
其特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。
(3)伪随机探测再散列
具体实现时,应建立一个伪随机数发生器。
例:已知哈希表长度m=12,哈希函数为
(1)如果用线性探测再散列处理冲突,下一个哈希地址为
(2)如果用二次探测再散列处理冲突,下一个哈希地址为
(3)如果用伪随机探测再散列处理冲突,且伪随机数序列为2,5,9,…,则下一个哈希地址为

从上述例子可以看出,线性探测再散列容易产生“二次聚集”,即在处理同义词的冲突时又导致非同义词的冲突。
线性探测再散列的优点是:只要哈希表不满,就一定能找到一个不冲突的哈希地址,而二次探测再散列和伪随机探测再散列则不一定。
如果要在上述哈希表中删除一个记录,则需要在该记录的位置上填入一个特殊记录,否则将无法找到在其后填入的同义词记录。
2. 再哈希法
【基本思想】
同时构造多个不同的哈希函数:
当哈希地址
这种方法不易产生聚集,但增加了计算时间。
3. 链地址法
【基本思想】
将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。
例:已知一组关键字(32,40,36,53,16,46,71,27,42,24,49,64),哈希表长度为13,哈希函数为

平均查找长度
4. 建立公共溢出区
【基本思想】
将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素一律填入溢出表。
8.4.3 哈希表的查找过程
【算法思想】
当查找关键字为K的元素时:
- (1)首先计算
;
- (2)如果单元
为空,则所查元素不存在;
- (3)如果单元
中元素的关键字为K,则找到所查元素;
- (4)否则重复下述解决冲突的过程:
a. 按解决冲突的方法,找出下一个哈希地址;
b. 如果单元为空,则所查元素不存在;
c. 如果单元中元素的关键字为K,则找到所查元素。
8.4.4 哈希法性能分析
由于冲突的存在,哈希法仍需要进行关键字比较,因此,需用平均查找长度来评价哈希法的查找性能。
哈希法中影响关键字比较次数的因素有三个:哈希函数、处理冲突的方法以及哈希表的装填因子。哈希表的装填因子α的定义如下:
α可描述哈希表的装满程度。显然,α越小,发生冲突的可能性越小,而α越大,发生冲突的可能性也越大。
例:已知一组关键字序列(19,14,23,01,68,20,84,27,55,11,10,79),给出按哈希函数
如图所示,其中,每个关键字下面带圈的数字,是放置该关键字时所进行的地址计算次数,或者说是放置该关键字时所进行的关键字比较次数(同时也是查找该关键字时所进行的关键字比较次数)。

查找19时,通过计算H(19)=6,ht[16]=19,查找成功。则查找关键字19,仅需要计算一次地址就可以找到。
查找01时,通过计算H(01)=1,ht[1]=14,但14不等于01,则找第一次冲突处理后的地址
查找55时,通过计算H(55)=3,ht[3]=68,但68不等于55,则找第一次冲突处理后的地址
(1)手工计算等概率情况下查找成功的平均查找长度公式
其中,
因此,对图8.30采用线性探测再散列法处理冲突的哈希表,可计算出在等概率情况下其查找成功的平均查找长度为
(2)手工计算在等概率情况下查找不成功的平均查找长度公式
其中,
查找不成功的情况分两种,一种是遇到空单元,另一种是按解决冲突的方法完全探测一遍后仍未找到。0到r-1相当于r个不成功查找的入口,从每个入口进入后,直到确定查找不成功为止,其关键字的比较次数就是与该入口对应的不成功查找长度。
因此,对图8.30采用线性探测再散列法处理的哈希表,可计算出在等概率情况下其查找不成功的平均查找长度为
返回目录:
Chilan Yu:《数据结构》目录链接zhuanlan.zhihu.com