
遥想当年网上仍在激烈争论"到底是学习经典版还是workbench?",而随着act插件的出现,经典版APDL的绝大部分高级功能已经移植到workbench中,基于workbench平台的多物理场耦合分析将是未来CAE的发展趋势,接下来用几个案例介绍Mechanical的强大。
案例一、外伸梁受力分析
1、问题描述
一根外伸梁受力如下,包括集中力、均布力、弯矩。对其进行静力学分析,求其支反力、挠度、剪力图、弯矩图。(详见《材料力学》王世斌主编,P102例3-4)

图1 外伸梁受力示意图
2、分析过程
采用梁单元Beam188模拟,在DM草图创建四条直线生成一个线体并赋予截面。给梁施加简支约束,按照图1加载集中力、均布力和弯矩,如图2所示。

图2 边界条件示意图
3、 求解结果
由于施加的集中力为负值,所以剪力图与理论结果反向。

图3 剪力弯矩位移图

图4 支反力结果
案例二、细长压杆失稳分析
1、问题描述
一细长杆件承受压力载荷,已知杆的横截面形状为矩形,截面的高度h和宽度b均为30mm,杆的长度l=2000mm,材料为Q235钢,弹性模量取2e5MPa,试计算不同约束条件的临界压力。
表1 压杆长度系数

杆横截面的惯性距为:

杆横截面的面积为:

杆横截面的最小惯性半径为:

杆的柔度为:

因为受压杆材料为Q235A,且柔度λ>100,所以可用欧拉公式计算其临界压力。根据欧拉公式有

当一端自由,一段固支时,Fcr=8327.48N;当两端铰支时,Fcr=33309.91N;
当一端铰支,一端固支时,Fcr=67979.42N;当两端固支时,Fcr=133239.65N。
2、分析过程
采用梁单元Beam188模拟,在DM草图创建直线生成一个线体并赋予截面。
当一端自由,一端固支时,得到模拟值为8326.3N。

图1 屈曲结果(一端自由一端固支)
当两端铰支时,得到模拟值为33291N。

图2 屈曲结果(两端铰支)
当一端铰支,一端固支时,得到模拟值为68056N。

图3 屈曲结果(一端铰支一端固支)
当两端固支时,得到模拟值为132936.04N。

图4 屈曲结果(两端固支)
3、结果对比
表2 结果对比