求一个向量变换为另一个向量的矩阵_线性代数32——线性变换及对应矩阵

本文探讨线性变换的概念,通过实例分析了线性变换的加法不变性和数乘不变性,并讨论了投影、旋转变换和向量乘以矩阵等正例,以及长度变换的反例。介绍了如何通过矩阵描述线性变换,强调了矩阵与坐标的关系,并以求导为例展示了如何确定线性变换的矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性变换这个词在线性代数中经常被提及,每个线性变换的背后都有一个矩阵。矩阵的概念比较直观,相比之下,线性变换就显得抽象了。

538f0a082942fc14cfcc62730f876ed5.png

抛开矩阵,我们从变换的角度讨论投影。通过T变换,使平面内的一个向量投影到一条直线上:

7ccee0dec38209babe43ee223fbaa6b6.png

T就像一个函数:给定一个输入向量,经过T的变换,输出成直线上的投影,过去我们一直用更专业的“映射”称呼这种变换关系。下图中vw是R2空间内的向量,通过T变换变成了直线上的投影,即T(v)和T(w):

018c3a802c581f09fdae0dcb5e591ab8.png

变换的关系有很多,而线性代数只讨论线性变换。如果T表示一个线性变换关系,对于任意向量vw以及标量c,线性变换应该保证下面两个运算的不变性,加法不变性和数乘不变性,这一点和线性组合类似:

a9f69fbf7fe397323eeea7d50c313430.png

把二者结合:

41c3a65b338cf14bca3f3fa3226d7a01.png

顺便说一下,投影变换是一种线性变换。

1判断线性变换

判断一个变换是否是线性变换其实并不困难,只要判断这个变换是否满足加法不变性和数乘不变性即可。

 1.1 反例1:平移整个平面

假设某个变换关系T是平面沿着某个方向平移v0,也就是说对于平面内的任意向量v,都有T(v) = v + v0,T变换是否是线性变换?

这个看起来很简单的变换并不是线性变换,它违背了线性变换的两个不变性,以数乘不变性为例:

4af5862d7cbcb553157e319bf78ecc9d.png

线性变换的不变性要求对输入空间内的任意向量都成立,当然也包括零向量,因此一个更简单的判断方法就是使用零向量。数乘不变性对于零向量来说将有T(0) = 0,但本例中T(0) = v0,所以说“平移”变换不是线性变换。

 1.2 反例2:求向量的长度

变换关系T(v) = ||v||是否是线性变换?

T变换将产生维度的变化。假设v是一个三维向量,经过T的变换将变成一个大于等于0的实数,也就是一维向量:

a6dd1a39b9d0236086989c00216336c9.png

虽然本例满足T(0) = 0,但是对于数乘不变性来说,如果c是负数,那么T(c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值