二次线性回归方程公式_r高中数学:线性回归方程

线性回归是统计学中的重要概念,用于分析变量间的相关关系。本文详细介绍了线性回归方程的公式、求解方法以及应用实例,包括最小二乘法推导线性回归方程,并通过具体例子展示了如何在实际问题中应用线性回归方程进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归是利用数理统计中的回归分析来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法,是变量间的相关关系中最重要的一部分,主要考查概率与统计知识,考察学生的阅读能力、数据处理能力及运算能力,题目难度中等,应用广泛.

线性回归方程公式

09c9eb27449e7094e123a12747816cbc.png

规律总结

73d6295e457486d6b179f4f8ef8f84a1.png132ce4fc8aa7de2f01ad5aa31b5eb4fc.png

(3)回归分析是处理变量相关关系的一种数学方法.主要用来解决:

①确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;

②根据一组观察值,预测变量的取值及判断变量取值的变化趋势;

③求线性回归方程.

线性回归方程的求法

 例1  

e376548026be08a494bb8ec09201aec0.png9d3abf32bd505bf97190e2001fa4a5f3.png

线性回归方程的应用

 例2  

de9585c854b122cb73c4e1955c606bfa.pngfc37aa783b2cd48a339aad7b89f560c3.png

 例3  

1effeb8a1e43e906702a282c1e6d2914.png12556fd2b02ed4baae5584afb8179b08.png

 例4  

c018e4d32ed37a33fdad7b545d454b0b.png05fcf78b987895af76bf9465bc218eec.png

 例5 

0cf64fd7fe6138d0c425ab60931cf5ad.png0e310c02d06cf06de9c21d0903e38796.png

 例6  

52a6f3ece1b03b35939ae3a9e3bf61fd.png36d41f0720a1b0f01c2da9becfe828ee.png

推导2个样本点的线性回归方程

 例7   设有两个点A(x1,y1),B(x2,y2),用最小二乘法推导其线性回归方程并进行分析。

解:由最小二乘法,设86e6fbc20a47e85d2166c95eae870df6.png,则样本点到该直线的“距离之和”为5b68d28f7ef116e6b4d79ab075bdc7ad.png

从而可知:当a9d409ee596291f337662a91f28492ed.png时,b有最小值。将7ca0f82712e2d42175682c8defe46a76.png29c4e6b294675765f83d9fc855c08516.png代入“距离和”计算式中,视其为关于b的二次函数,再用配方法,可知:80673460f76b0d5f1cfa45d4dd70de2e.png

此时直线方程为:

4a323e742169fc04d7b5510e97dbee82.png

设AB中点为M4691c4bb4c1cb64f29c5d96430fad928.png,则上述线性回归方程为

fd5bd5fcf8b697e3a6036f739ba483d8.png

可以看出,由两个样本点推导的线性回归方程即为过这两点的直线方程。这和我们的认识是一致的:对两个样本点,最好的拟合直线就是过这两点的直线。

上面我们是用最小二乘法对有两个样本点的线性回归直线方程进行了直接推导,主要是分别对关于a和b的二次函数进行研究,由配方法求其最值及所需条件。实际上,由线性回归系数计算公式:

63047650b450a79597cc799efb62cd7b.png

可得到线性回归方程为

6eecbcef727a488784d2adba9e31d101.png

设AB中点为M8f72557b64693a14dcf1001bda881810.png,则上述线性回归方程为

00d7f5bd15bab9546d8a61b8fb603c0a.png

求回归直线方程

 例8   在硝酸钠的溶解试验中,测得在不同温度1f09e6e9e394b1fa560fa7d4fda0a20b.png下,溶解于100份水中的硝酸钠份数799b310692bf4da373e0f342c45d0384.png的数据如下

6407432e6950b00f22adec40561f958d.png

0

4

10

15

21

29

36

51

68

e9ed4fd0fa4a992e7b469397321ac4c0.png

66.7

71.0

76.3

80.6

85.7

92.9

99.4

113.6

125.1

描出散点图并求其回归直线方程.

解:建立坐标系,绘出散点图如下:

1463df118d5dbad32413ea04f6ff0fad.png

由散点图可以看出:两组数据呈线性相关性。设回归直线方程为:a2722a9ef061308580981b5306e34771.png

由回归系数计算公式:

bc260e1e539a84cc5ade29f4fb0fe019.png

852296b33764bcdad7f431a0945e2c6a.png

可求得:b=0.87,a=67.52,从而回归直线方程为:y=0.87x+67.52。

三、综合应用

例3、假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下统计资料:

4d93257df33a3456cc141face7bcaefd.png

(1)求回归直线方程;(2)估计使用10年时,维修费用约是多少?

解:(1)设回归直线方程为:

600c5865ac3d61ab8b506ce695ab5d06.png

6c6c63c18d7df011e0d442678d5cb232.png

(2)将x = 10代入回归直线方程可得y = 12.38,即使用10年时的维修费用大约是12.38万元。

线性回归方程也是高考常考考点之一,希望同学们能认真学习,掌握线性回归方程的求法及应用,认真体会线性回归方程的求解过程,理解变量间的相关关系,从而体会统计思想在实际生活中的应用及重要.

▍ 来源:综合网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值