python array 计算_python数据分析——numpy数组及其运算

本文介绍了使用Python的NumPy库创建数组的各种方法,包括从列表、元组转换,以及利用NumPy内置函数如arange、zeros等创建特定类型的数组。此外,还详细解释了如何使用isclose和allclose函数来比较数组中的元素是否足够接近。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、创建数组

1、

import numpy as np#导入numpy模块,np为命名可更改

a=np.array([1,2,3])#将列表变为数组

b=np.array((1,2,3))#将元组变为数组

print(a,b)

[1 2 3] [1 2 3]

可通过这类方法将对象变为数组

2、

import numpy as np

a=np.arange(6)#用法与range类似,不过返回的为数组

b=np.linspace(0,10,11)#创建等差数组,其中包含11个数

c=np.linspace(0,10,11,endpoint=False)#不包含终点,且数组差值按照数据去均分,f要大写

d=np.logspace(0,10,11,base=2)#相当于2**np.linspace(0,10,11),若没有base,则默认为10

e=np.zeros(3)#全为0的一维数组

f=np.zeros(3)#全为1的一维数组

g=np.zeros((3,3))#全为0的二维数组,三行三列

h=np.identity(3)#三行三列的单位矩阵

i=np.empty((5,5))#空矩阵,只申请空间,元素不一定为零

j=np.random.randint(0,20,3)#随机数组,0到20间的3个数字

k=np.random.randint(0,20,(2,2))#生成二行二列个0到20间的数字

l=np.random.rand(10)#10个介于[0,1)之间的随机数

m=np.random.standard_normal(5)#从正态分布中随机抽取5个数

n=np.random.standard_normal(size=(2,2,2))#二页二行二列

o=np.diag([1,2,3])#生成对角矩阵

print(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o)

二、测试两个数组对应元素是否足够接近

1、使用isclose()与allclose()来测试

2、演示:

import numpy as np

a=np.array([1,2,3,4])

b=np.array([0.9,1.9,2.9,3.9])

print(np.allclose(a,b))

print(np.allclose(a,b, rtol=0.1))#设置相对误差

print(np.allclose(a,b, atol=0.1))#设置绝对误差

print(np.isclose(a,b))

print(np.isclose(a,b, atol=0.1))

False

False

True

[False False False False]

[ True True True True]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值