garch预测 python_EWMA,ARCH与GARCH模型

本文详细介绍了指数移动平均(EWMA)、ARCH和GARCH模型,并通过Python代码展示了如何利用历史数据预测波动率。案例中使用了上证指数2015年至2020年的数据,对三种模型进行了实证分析,包括ARCH模型的改进和GARCH(1,1)模型的结合,强调了γ参数对均值复归速度的影响。最后,对比了不同模型的预测效果。" 51087473,5527837,使用IntelliJ IDEA远程调试Spark应用,"['Spark', '远程调试', 'Intellij', 'Scala', 'Java SDK']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、EWMA模型

指数移动平均(Exponential Moving Average, EMA或EWMA)是以指数式递减加权的移动平均。各数值的加权而随时间而指数式递减,越近期的数据加权越重,但较旧的数据也给予一定的加权。加权的程度以常数λ决定,λ数值介乎0至1。该模型认为第n天的波动率与n-1天的波动率和收益率有关系:

6ff87c52a81b83648bec00d772a9ac66.png

f1d0add33e15200ac63307d53b574035.png

【案例】我们依旧使用上证指数2015.1.1-2020.3.31日的收盘价数据;根据前一天的波动率和收益率数据来预测下一天的波动率。使用2015.1.1-2019.21.31的数据,在后续每天收益率变动的情况下,一步一步滚动预测2020.1.1-2020.3.31的波动率。

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom pylab import mplmpl.rcParams['font.sans-serif']=['SimHei']mpl.rcParams['axes.unicode_minus']=FalseSH=pd.read_excel('D:/欧晨的金学智库/风险管理基础/上证指数.xlsx','Sheet1',header=0,index_col=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值