提示:点击上方中认通测一键关注
CTC.Laboratories,Inc.今日词条
谷雨,是二十四节气的第六个节气,也是春季的最后一个节气,这就意味着春天渐渐走远,而夏天就要来了。谷雨源自古人“雨生百谷”的说法,是每年4月19日到21日之间太阳到达黄经30°时,也是播种移苗、种瓜点豆的最佳时节,民间仍有走谷雨、食香椿、喝谷雨茶的习俗。
问题来了,什么是信号?
简介
信号是表示消息的物理量,如电信号可以通过幅度、频率、相位的变化来表示不同的消息。信号是传输消息的载体工具,从根本上讲,包含了声音信号,光信号和电信信号等等。例如:古代人点燃烽火台产生滚滚熔烟,向我方军队提供敌人进攻的消息,这就属于光信号等。
分类
对信号的分类方法很多,可以分为确定性信号和非确定性信号(即称随机信号)、模拟信号和数字信号、能量信号和功率信号、时域信号和频域信号、时限信号和频限信号、实信号和复信号等等。还有很多。
辣么,信号常见概念有哪些?
1模拟信号和数字信号模拟信号是指信号波形模拟着信息的变化而变化,也随着时间的变化而变化,其主要特性是幅度是连续的,可取无限个值;而在时间上则可连续,也可断续,不连续。
数字信号是指不仅在时间上是离散的,而且在幅度上也是离散的,只能取有限个数值的信号。如电报信号,脉冲编码调制(PCM,Pulse Code Modulation)信号等都属于数字信号。二进制信号就是一种数字信号,它是由“1”和“0”这两位数字的不同的组合来表示不同的信息。
我们在生活中经常遇到信号。比如说,股票的涨跌图,心跳的上下浮动图等等。在通信领域,无论是的GPS、手机语音、收音机、互联网通信,我们发送和接收的都是信号。比如,深圳地的铁通信系统与WiFi信号冲突,也就是地铁的天线收到了外界的WIFI的信号或者其他的一些干扰信号,而错把该信号当作地铁的通信信号。
信号是随着时间或者空间变化的。在信号处理时,我们常用“信号”来特指一维信号,也就是只随单一一个时间或空间维度变化的序列,这样的信号在数学上可以表示成f(t)或者f(x)这样一个函数。与一维信号形成对应的是多维信号,比如说图像是二维信号,它随x,y两个空间维度变化,从数学上表示成为f(x, y)。下面在没有特别声明的情况下,都使用“信号”来代指一维信号。
尽管信号的使用如此广泛,但信号从数学意义上来并没有什么很神秘的地方,只是普通的函数。信号处理的方法可以通用于任何一个领域的信号(无论是通信或者金融还是其他领域),这也是信号显现和处理的魅力所在。
2正弦波Y=sin X
X分别为角度值,例如0°,180°等等,它是分布在一个函数表里面的,随着频率的变化而变化。
3频谱(frequency spectrum)
频谱是频率谱密度的简称,频率是周期的倒数。是频率的分布曲线。复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。频谱广泛应用于声学、光学和无线电技术等方面。分析各种振动的频谱就能了解复杂的频谱的基本特性。频谱分析已是分析复杂振动的一种方法。
4傅立叶变换傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。Transformée de Fourier有多个中文翻译,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。
傅立叶是一名工程师,他发现了任何信号实际上都可以通过简谐波相加近似得到。也就是傅立叶定理(Fourier inversion theorem):任何一个信号都可以由简谐波相加得到。因此,复杂的信号可以分解成为许多个简单的简谐波。一个信号由多个频率的简谐波相加得到。组成信号的某个简谐波,称为信号的一个分量(component)。
①傅立叶变换
②傅立叶逆变换
* 傅里叶变换属于谐波分析。
* 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似.
比如下图,显示了我们如何用简谐波的叠加来不断趋近蓝色的信号:
傅立叶变换是一套固定的计算方法,用于算出信号的各个分量(也就是上面的an,bn)。在信号处理时,可以将信号进行傅立叶变换,转换为简谐波的组合。通过分别控制各个频率上的简谐波分量,我们可以更加有效的进行信号处理。比如说,我们通信的时候可以使用高频的简谐波信号。但是接收信号的天线可能会收到其他频率的干扰信号。这个时候,我们可以对接收到的混合信号做傅立叶变换,只提取目标高频的分量。这是降低信号噪音的常用方法。傅立叶变换的过程有些复杂,但已经有大量的程序可以帮你进行。你所需要的只是输入信号,计算机会帮你算出它的各个分量。
比如说,如果信号f(x)是周期性的,我们可以将它变换成:
也就是说,一个信号可以看做许多简谐波的和。上面的a,b是可以通过原信号求得的参数为:
a, b代表了信号在各个频率上的简谐波分量的强弱(以及相位)。这样,信号就分解为了简谐波的和。由于简谐波比较容易理解,我们可以通过研究这些分量,来明白复杂信号背后的机制。
想了解更多技术分析,马上关注我们吧!
●END●
中认通测Tel:0755-27521059