多帧点云数据拼接合并_PCL点云处理实践(二):点云的处理和拼接

本文介绍了在PCL库中处理多帧点云数据的方法,包括使用直通滤波器去除背景点,通过StatisticalOutlierRemoval滤除离群点,应用VoxelGrid进行下采样,以及使用RANSAC算法进行点云配准,以实现点云的拼接。通过这些步骤,可以有效地减少计算量并提高拼接精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

滤除背景

我们获得的点云可能包含一部分背景的点云。要去除背景,只保留人体信息,最简单的方式是使用直通滤波器滤除较远点。这部分代码如下:1

2

3

4

5

6pcl::PassThrough<:pointxyz>pass; //设置滤波器对象

pass.setInputCloud(cloud); //设置输入点云

pass.setFilterFieldName("z"); //设置过滤时所需要点云类型的z字段

pass.setFilterLimits(0.0,1.0); //设置在过滤字段上的范围

//pass.setFilterLimitsNegative (true); //设置保留范围内的还是过滤掉范围内的

pass.filter(*cloud_filtered); //执行滤波,保存过滤结果在cloud_filtered

滤除背景也可以通过Kinect SDK实现,这部分可以参考SDK的“游戏者ID”。

移除离群点

激光扫描通常会产生密度不均匀的点云数据集。另外,测量中的误差会产生稀疏的离群点,使效果更糟。因此对每个点的邻域进行一个统计分析,并修剪掉那些不符合一定标准的点。1

2

3

4

5pcl::StatisticalOutlierRemoval<:pointxyz> sor;// 创建滤波器对象

sor.setInputCloud(cloud); //设置呆滤波的点云

sor.setMeanK(50); //设置在进行统计时考虑查询点邻近点数

sor.setStddevMulThresh(1.0); //设置判断是否为离群点的阈值

sor.filter(*cloud_filtered); //执行滤波处理保存内点到cloud_filt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值