Dremio数据湖仓引擎核心概念梳理

#技术栈深潜计划:原理解析&编程技巧深度探索征文活动#

一、核心架构概念

1. 自助数据结构(Self-Serve Data Layer)

Dremio的核心创新,通过虚拟化技术实现:

  • 无ETL数据访问:直接连接原始数据源(数据湖、数据库、API等),消除传统ETL复杂性

  • 逻辑数据集(Virtual Datasets)

    • 通过SQL或UI定义数据转换逻辑

    • 物理数据仍保留在源系统,避免数据冗余

    • 支持版本控制和协作

2. 节点角色(Node Roles)
节点类型功能说明高可用机制
CoordinatorSQL解析、查询优化、任务调度多节点部署+ZooKeeper选举
Executor运行Worker进程执行计算任务,含列式执行引擎水平扩展(无状态)
3. 执行引擎关键技术
  • Apache Arrow内存格式

    • 跨系统零拷贝数据交换

    • 列式内存布局提升CPU缓存命中率

  • Gandiva运行时

    • LLVM编译SQL为原生机器码

    • 向量化处理实现吞吐量提升5 − 100


二、核心特性详解

1. 数据湖加速引擎
  • 反射(Data Reflections)

    graph TB
      A[原始数据] --> B{自动优化}
      B --> C[聚合反射]
      B --> D[原始反射]
      C --> E[加速查询]
      D --> E
    
    • 自动创建物化视图(无需用户管理)

    • 支持聚合反射(预计算指标)和原始反射(列式存储加速扫描)

2. 统一元数据服务
  • 语义层(Semantic Layer)

    • 统一管理表/视图/反射的元数据

    • 支持跨源JOIN(如S3 Parquet + SQL Server)

  • 数据血缘(Lineage)

    • 追踪数据集来源与转换过程

    • 影响分析(Impact Analysis)支持变更评估

3. 动态资源管理
  • 队列系统(Queue Prioritization)

    队列类型默认优先级典型场景
    HIGH100交互式BI查询
    MEDIUM50定时报表
    LOW10后台ETL
    • 基于令牌桶算法防止资源抢占

  • 弹性扩缩容

    • Executor节点秒级扩容(K8s集成)

    • Worker自动负载均衡


三、性能优化原理

1. 列式执行优势
  • I/O效率公式:

  • 对比行式存储:减少70%−90%磁盘读取量

2. 反射加速机制
反射类型存储格式适用场景加速效果
原始反射Apache Arrow全表扫描扫描速度10×
聚合反射ParquetSUM/COUNT等聚合查询响应时间100×

四、典型应用场景

  1. 实时数据探索

             直接查询Hudi/Iceberg数据湖,延迟<1s
  2. BI加速层

             替换传统Cube,支持Tableau/Power BI直连
  3. 统一数据入口

             整合分散数据源(RDBMS + NoSQL + 文件存储)


附1:Dremio vs 传统方案对比

能力Dremio方案传统方案
数据准备时间分钟级周级(ETL开发)
存储成本00(无数据副本)2−3×原始数据
查询延迟亚秒级分钟级

附2:思维导图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喂完待续

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值