一、核心架构概念
1. 自助数据结构(Self-Serve Data Layer)
Dremio的核心创新,通过虚拟化技术实现:
-
无ETL数据访问:直接连接原始数据源(数据湖、数据库、API等),消除传统ETL复杂性
-
逻辑数据集(Virtual Datasets):
-
通过SQL或UI定义数据转换逻辑
-
物理数据仍保留在源系统,避免数据冗余
-
支持版本控制和协作
-
2. 节点角色(Node Roles)
节点类型 | 功能说明 | 高可用机制 |
---|---|---|
Coordinator | SQL解析、查询优化、任务调度 | 多节点部署+ZooKeeper选举 |
Executor | 运行Worker进程执行计算任务,含列式执行引擎 | 水平扩展(无状态) |
3. 执行引擎关键技术
-
Apache Arrow内存格式:
-
跨系统零拷贝数据交换
-
列式内存布局提升CPU缓存命中率
-
-
Gandiva运行时:
-
LLVM编译SQL为原生机器码
-
向量化处理实现吞吐量提升5 − 100
-
二、核心特性详解
1. 数据湖加速引擎
-
反射(Data Reflections):
graph TB A[原始数据] --> B{自动优化} B --> C[聚合反射] B --> D[原始反射] C --> E[加速查询] D --> E
-
自动创建物化视图(无需用户管理)
-
支持聚合反射(预计算指标)和原始反射(列式存储加速扫描)
-
2. 统一元数据服务
-
语义层(Semantic Layer):
-
统一管理表/视图/反射的元数据
-
支持跨源JOIN(如S3 Parquet + SQL Server)
-
-
数据血缘(Lineage):
-
追踪数据集来源与转换过程
-
影响分析(Impact Analysis)支持变更评估
-
3. 动态资源管理
-
队列系统(Queue Prioritization):
队列类型 默认优先级 典型场景 HIGH 100 交互式BI查询 MEDIUM 50 定时报表 LOW 10 后台ETL -
基于令牌桶算法防止资源抢占
-
-
弹性扩缩容:
-
Executor节点秒级扩容(K8s集成)
-
Worker自动负载均衡
-
三、性能优化原理
1. 列式执行优势
-
I/O效率公式:
-
对比行式存储:减少70%−90%磁盘读取量
2. 反射加速机制
反射类型 | 存储格式 | 适用场景 | 加速效果 |
---|---|---|---|
原始反射 | Apache Arrow | 全表扫描 | 扫描速度10× |
聚合反射 | Parquet | SUM/COUNT等聚合查询 | 响应时间100× |
四、典型应用场景
-
实时数据探索
直接查询Hudi/Iceberg数据湖,延迟<1s -
BI加速层
替换传统Cube,支持Tableau/Power BI直连 -
统一数据入口
整合分散数据源(RDBMS + NoSQL + 文件存储)
附1:Dremio vs 传统方案对比
能力 | Dremio方案 | 传统方案 |
---|---|---|
数据准备时间 | 分钟级 | 周级(ETL开发) |
存储成本 | 00(无数据副本) | 2−3×原始数据 |
查询延迟 | 亚秒级 | 分钟级 |
附2:思维导图