python 图像检索系统_基于VGG-16的海量图像检索系统(以图搜图升级版)

本文介绍了如何使用Python和VGG-16模型建立一个图像检索系统,通过提取特征向量并计算相似度进行以图搜图。首先,解释了图像检索的基本原理,然后展示了在Tensorflow-GPU 1.8 + Keras环境下,从数据库中提取特征、存储索引和在线搜索的代码实现。最后,提供了参考资源和相关链接。

检索系统原理:

图像检索过程简单说来就是对图片数据库的每张图片抽取特征(一般形式为特征向量),存储于数据库中,对于待检索图片,抽取同样的特征向量,然后并对该向量和数据库中向量的距离(相似度计算),找出最接近的一些特征向量,其对应的图片即为检索结果。[1]

原理部分详见论文,以下是代码实现:

开发环境:

#windows 10

#tensorflow-gpu 1.8 + keras

#python 3.6

执行示例:

#对database文件夹内图片进行特征提取,建立索引文件featureCNN.h5

python index.py -database database -index featureCNN.h5#使用database文件夹内001_accordion_image_0001.jpg作为测试图片,在database内以featureCNN.h5进行近似图片查找,并显示最近似的3张图片

python query_online.py -query database/001_accordion_image_0001.jpg -index featureCNN.h5 -result database

1、抽取特征:extract_cnn_vgg16_keras.py

#-*- coding: utf-8 -*-

importnumpy as npfrom numpy importlinalg as LAfrom keras.applications.vgg16 importVGG16from keras.preprocessing importimagefrom keras.applications.vgg16 importpreprocess_inputclassVGGNet:def __init__(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值