摘要:无人机倾斜影像制作三维模型,速度快、成本低,成为城市三维建模的首选。 而无人机倾斜影像三维建模中,数据冗余、模型 变形、影像缺失等多种问题常常会影响建模效果。本文针对无人机倾斜影像三维建模中的问题,提出了一系列相应的模型精细化 处理技术,使三维模型更加形象、逼真。
关键词:无人机倾斜影像 三维建模 模型变形 影像缺失 模型精细化
倾斜影像是同时从多个角度采集的影像数据, 利用倾斜影像制作三维模型,不仅使高昂的三维建 模成本大大降低,而且有效提升了三维建模的速度 和效率。
目前,无人机倾斜影像构建的三维模型,为智慧城市建设及地形复杂的地质灾害监测等提供了 全面、准确、详细的三维地理信息,广泛应用于多个领域。 然而,无人机倾斜影像三维建模实践中, 在影像预处理、空中三角测量、模型建立后等各技术 环节,还存在数据冗余、模型变形、影像缺失等多种 问题。
笔者针对这些问题,提出了一系列相应的技术措施,使无人机倾斜影像三维建模实现了模型精细化。
1 无人机倾斜影像三维建模的关键技术
无人机倾斜影像三维建模的关键技术包括数据 预处理、空中三角测量、多视影像密集匹配、纹理映 射等[2]。
倾斜影像数据预处理主要为格式转换、旋 转影像、畸变差改正和增强处理。空中三角测量是以航空像片上量测的像点坐标为依据,采用严密的 数学模型,按最小二乘法原理,采用少量地面控制点 为平差条件,快速求解影像的定向及地面点加密问 题[3]。
倾斜影像的空三解算是将倾斜影像转换为正射影像的过程,包括影像预处理、影像联合平差、 基于特征点的影像匹配和正射影像的生成等步骤。
通常所用的影像匹配方法有基于像方灰度的匹配算 法,如相关函数法、协方差函数法、相关系数法、差平 方和法、差绝对值法、最小二乘影像匹配法等,还有一种影像匹配方法是基于像方特征的匹配算法,如 金字塔多级影像匹配算法、SIFT算法等[4]。
SIFT算 法在特征点提取的数量上有明显的优势,是从一幅 图像中根据设定的阈值找到一个局部特征向量集, 可以很好地进行局部目标的识别与匹配存在较大变 形如旋转、缩放、尺度改变的影