python数据预处理流程_用Python实现数据预处理

本文详细介绍了Python数据预处理的流程,包括导入库、数据集处理、缺失值填充、分类数据编码、数据集划分以及特征缩放。通过示例展示了如何使用Numpy和Pandas进行数据操作,以及如何利用sklearn库进行数据预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:Afroz Chakure

翻译:疯狂的技术宅

未经允许严禁转载

机器学习的核心是处理数据。你的机器学习工具应该与数据的质量一样好。本文涉及清理数据的各个步骤。你的数据需要经过几个步骤才能用于预测。

bVbuQLn?w=713&h=394

数据预处理涉及的步骤:

导入所需的库

导入数据集

处理缺失的数据。

编码分类数据。

将数据集拆分为测试集和训练集。

特征缩放。

那么让我们逐一学习这些步骤。

步骤1:导入所需的库

你先需要下载此数据集:Data.csv

每次我们制作新模型时,都会要求导入 Numpy 和 Pandas。 Numpy 是一个包含数学函数的库,用于科学计算,而 Pandas 用于导入和管理数据集。

import pandas as pd

import numpy as np

在这里我们导入 pandas 和 Numpy 库并分别命名名 “pd” 和 “np”。

第2步:导入数据集

数据集以 .csv 格式提供。 CSV 文件以纯文本格式存储表格数据。该文件的每一行都是一个数据记录。我们使用 pandas 库的 read_csv 方法将本地 CSV 文件读取为数据帧(dataframe)。

dataset = pd.read_csv('Data.csv')

在仔细检查数据集之后,我们将在数据集(X)中创建一个特征矩阵,并创建一个依赖向量(Y)及其各自的观察结果。我们用 pandas 的 iloc (用于修复索引以进行选择)读取列,它包含两个参数 — [行选择,列选择]。

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, 3].values

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值