拉普拉斯噪声公式_一个基于四方向的拉普拉斯算子的四阶偏微分去噪方法(精)...

本文提出了一种基于四方向拉普拉斯算子的四阶偏微分去噪方法,改进了You-Kaveh模型,有效去除高斯噪声并保留图像细节,实验显示新方法PSNR值提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个基于四方向的拉普拉斯算子的四阶偏微分去噪方法

曾超,王美清

(

福州大学数学与计算机科学学院,福建

福州

350002)

摘要:本文将

四方向

引入拉普拉斯算子

(

这四方向是指:水平、垂直、斜左上、

斜左下四个方向

)

,改进了

You-Kaveh

模型,提出一个新的四阶偏微分去噪方

法。实验结果表明,新方法比

You-Kaveh

模型能更好地去除高斯噪声,

PSNR

得到了提高。

关键词:

You-Kaveh

模型;高斯噪声;拉普拉斯算子

A Fourth Order Partial Differential Dnoising Method Based on Four

Directional Laplacian Operator

ZENG Chao,WANG Mei-qing

(College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian,

350002, China)

Abstract:In this paper, the “Four Directions” is introduced into the Laplacian oper

ator,

(the four directions are horizontal, vertical, diagonal left top and diagonal left bottom

directions), and the You-Kaveh model is improved, a new fourth order partial

differential denoising method is proposed. The result of experiences shows that the new

method can remove the gaussian noise better than the You-Kaveh model, higher values

of PSNR are gained.

Keywords:You-Kaveh model; gaussian noise; Laplacian operator

引言

在数字图像处理的研究中,图像恢复作为图像预处理技术之一,成为图像处理研

究人员的热点研究内容

[1]

。图像去噪就是一个典型的图像复原的例子。传统的图

像去噪技术,如中值滤波,维纳滤波等,在去除噪声的同时,也使得边界或图像

的细节特征变得模糊,影响了对图像的后续处理。而利用偏微分方程(

PDE

)对

受噪声污染的图像进行去噪,能够在去噪的同时保留边界特征,因此成为当前研

究的热点。在基于

PDE

的图像去噪模型中,

You-Kaveh

(

YK

)方法是其中的经

典模型,受到了广泛的应用和研究。但是,

YK

模型的方程中,拉普拉斯算子只

__________________________

作者简介:曾超

(1982

)

,男,硕士研究生

基金项目:福建省自然科学基金资助项目

(

项目编号

A0510005);

福州大学发展基

金资助项目

(

项目编号

2005-XQ-16)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值