一.基础介绍
协同控制主要涉及三个部分:智能体动力学、智能体间相互作用、协同控制规律
相互作用:智能体通常动力学上彼此解耦。之间的信息交换通常以图的形式表示,可以是静态的(边非时变)或者动态的(边是时变的)。
二.相关定义

Adjacency matrix - 邻接矩阵
<x,y>:有向边 任意两顶点间的边均是有向边,则为有向图
邻接:表示顶点间的关系。若图含(x,y),则顶点x与顶点y邻接。
邻接矩阵:表示有向图的一种存储方法
用两个数组:一维数组存储顶点信息,二维数组存储弧/线的信息。
图有n个顶点,则邻接矩阵是n*n的方阵,
无向图(undigraph)的邻接矩阵:两个顶点有边为1,否则为0,主对角线为0,且矩阵对称
有向图(digraph)的邻接矩阵:两个顶点有边为1,否则为0,主对角线为0,矩阵不对称
网图(network)的邻接矩阵:表中对应位置写图中弧的权重,主对角线为0,其余部分取INF
Laplacian matrix – 拉普拉斯矩阵
L为拉普拉斯矩阵,L=图的度矩阵-图的邻接矩阵
度矩阵(degree):对角阵,对角上的元素为各个顶点的度。有向图中,顶点vi的度分为顶点vi的出度和入度,即从顶点vi出去的有向边的数量和进入顶点vi的有向边的数量。
在求L时根据情况选择出度矩阵或入度矩阵。
性质:矩阵是正半定的;行和为0,最小特征值为0,对应特征向量为全1列向量;特征值中0出现的次数即图连通区域的个数;最小特征值为0,对应特征向量为全1