拉普拉斯定理_协同控制笔记1——基础介绍及部分定义定理

本文介绍了协同控制的基础知识,包括智能体动力学、智能体间相互作用和协同控制规律。详细阐述了邻接矩阵和拉普拉斯矩阵的概念,如无向图、有向图和网图的邻接矩阵表示,以及拉普拉斯矩阵的性质。此外,还提到了克罗内克积在协同控制中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.基础介绍

协同控制主要涉及三个部分:智能体动力学、智能体间相互作用、协同控制规律

相互作用:智能体通常动力学上彼此解耦。之间的信息交换通常以图的形式表示,可以是静态的(边非时变)或者动态的(边是时变的)。

二.相关定义

1539ac7b39efacbd46591e6476495a7a.png

Adjacency matrix - 邻接矩阵

<x,y>:有向边 任意两顶点间的边均是有向边,则为有向图

邻接:表示顶点间的关系。若图含(x,y),则顶点x与顶点y邻接。

邻接矩阵:表示有向图的一种存储方法

用两个数组:一维数组存储顶点信息,二维数组存储弧/线的信息。

图有n个顶点,则邻接矩阵是n*n的方阵,

无向图(undigraph)的邻接矩阵:两个顶点有边为1,否则为0,主对角线为0,且矩阵对称

有向图(digraph)的邻接矩阵:两个顶点有边为1,否则为0,主对角线为0,矩阵不对称

网图(network)的邻接矩阵:表中对应位置写图中弧的权重,主对角线为0,其余部分取INF

Laplacian matrix – 拉普拉斯矩阵

L为拉普拉斯矩阵,L=图的度矩阵-图的邻接矩阵

度矩阵(degree):对角阵,对角上的元素为各个顶点的度。有向图中,顶点vi的度分为顶点vi的出度和入度,即从顶点vi出去的有向边的数量和进入顶点vi的有向边的数量。

在求L时根据情况选择出度矩阵或入度矩阵。

性质:矩阵是正半定的;行和为0,最小特征值为0,对应特征向量为全1列向量;特征值中0出现的次数即图连通区域的个数;最小特征值为0,对应特征向量为全1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值