eigen一维向量_Eigen向量和矩阵的用法1(C++)

本文介绍了Eigen库中的一维向量,包括向量的定义、类型、构造方法以及如何初始化和调整大小。Eigen中的向量默认为列向量,同时也支持行向量。通过typedef定义了如Vector3f、RowVector2i等类型,并提供了动态大小的定义如VectorXd。文章通过实例展示了如何使用逗号初始化方式赋值,并提及了rows(), cols(), size()以及resize()等函数的应用。" 53467976,5671424,使用jQuery判断图片加载完成的多种方法,"['jQuery', '图片处理', '前端框架', 'JavaScript', 'DOM操作']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Eigen中,所有的矩阵Matrix和向量Vector都是由Matrix类构造的。向量只不过是矩阵的特殊形式,只有一列(列向量)或者一行。

Matrix模板类有6个参数,其中前三个参数是必须的。前三个参数如下:

Matrix

Scalar 是 标量类型,取值可以是 float ,int double 等。

RowsAtCompileTime 和 ColsAtCompileTime 是在程序编译时就已经知道的矩阵的行数和列数。

Eigen 提供了一些常用的 定义好的类型。比如:

typedef Matrix Matrix4f .

在Eigen中,列向量是默认向量,在不特别说明的情况下,向量Vector就是指的列向量。在Eigen中定义了列向量:

typedef Matrix Vector3f ;

Eigen也定义了行向量:

typedef Matrix RowVector2i ;

如果矩阵的尺寸在编译的时候是不确定的,而在运行的时候才能确定,Eigen提供了定义动态大小的方法。比如非常好用的:

typedef Matrix MatrixXd;

MatrixXd定义了任意行数和列数的矩阵,可以在运行时确定。

类似地,对于向量有:

typedef Matrix VectorXi ;

也可以对于一个维度确定,而指定另外一个维度是动态大小的。

Matrix 矩阵的行数是 3,列数不确定。

矩阵的构造,Eigen提供了默认构造函数。

Matrix3f a;

MatirxXf b;

a 是一个3 x 3的矩阵,每个元素都是未初始化的float。

b 目前是一个 0 x 0 的矩阵。

带参数的构造函数,对于矩阵,行数在列数前面,对于向量,只有向量的大小。

MatrixXf a(10,15);

VectorXf b(30)

<think>好的,我现在需要帮助用户解决关于C++ Eigen库中向量使用的问题。首先,用户提到了Eigen向量用法相关示例,我需要根据提供的引用内容来组织答案。让我先理清用户的需求。 用户提供的引用中,引用[2]提到了Eigen::VectorXd的初始化以及reshaped方法的使用。引用[3]提到机器人库RL,但可能相关性较低。因此,我应该重点围绕引用[2]中的内容展开。 首先,我需要介绍Eigen库的基本向量类型,比如VectorXd(动态大小的双精度向量),Vector3d(固定大小的三维向量)等。然后,根据示例代码,展示如何初始化向量,例如使用逗号初始化器,或者逐元素赋值。 接下来,用户可能需要了解向量的基本操作,如访问元素、修改大小、数学运算等。引用[2]中提到了reshaped方法,用于改变向量的形状,但需要注意Eigen默认是列优先存储,这与MATLAB类似。这部分需要详细解释reshaped的用法,并给出示例代码。 此外,可能还需要提到向量矩阵的转换,比如如何将向量重塑为矩阵,或者从矩阵中提取向量。例如,reshaped(3,3)将9维向量转换为3x3矩阵,这里需要注意存储顺序的影响。 用户可能还关心性能问题,比如何时使用固定大小向量,何时使用动态大小向量Eigen的官方文档通常建议在知道大小时使用固定大小以提高性能,但需要根据具体情况判断。 在编写示例代码时,要确保语法正确,并符合用户提供的格式要求,比如行内公式用$...$,独立公式用$$...$$。不过用户的问题主要涉及代码示例,可能数学公式较少,但如果有涉及线性代数的内容,可能需要数学表达式,如向量点积、范数等,这时候需要应用LaTeX格式。 另外,用户要求生成相关问题,我需要思考与Eigen向量使用相关的常见问题,例如动态与固定大小向量的区别,reshaped方法的注意事项,性能优化技巧等。 最后,要确保回答结构清晰,分点说明,并引用提供的参考内容。注意检查是否有遗漏的关键点,例如存储顺序对reshaped结果的影响,这在引用[2]中提到过,必须强调列优先的重要性。 现在,我需要将以上思考整理成一个结构化的回答,包含基本用法、示例代码、reshape操作、注意事项,以及相关问题。同时确保代码示例正确,注释清晰,并正确引用来源。</think>### C++ Eigen向量使用详解 Eigen库是C++中强大的线性代数库,其向量模块提供了灵活的数学向量操作。以下是核心用法及示例: #### 一、向量初始化与基本操作 1. **固定大小向量** 适用于编译期已知维度的场景: ```cpp Eigen::Vector3d v; // 三维向量 v << 1.5, 2.0, 3.0; // 逗号初始化 ``` 2. **动态大小向量** 使用`VectorXd`类型(X表示动态大小): ```cpp Eigen::VectorXd M1(9); // 声明9维向量 M1 << 1,2,3,4,5,6,7,8,9; // 按列优先顺序填充[^2] ``` 3. **元素访问与修改** ```cpp M1[0] = 3.14; // 下标访问(索引从0开始) double val = M1.coeff(2); // 安全访问方法 ``` #### 二、向量重塑与矩阵转换 1. **reshape操作** 通过`reshaped()`改变向量形状为矩阵: ```cpp Eigen::MatrixXd mat = M1.reshaped(3,3); // 转为3x3矩阵 // 输出效果: // 1 4 7 // 2 5 8 // 3 6 9 ``` *注意:Eigen默认使用列优先存储,与MATLAB一致[^2]。* 2. **存储顺序控制** 显式指定行优先存储: ```cpp auto row_major_mat = M1.reshaped<Eigen::RowMajor>(3,3); // 结果: // 1 2 3 // 4 5 6 // 7 8 9 ``` #### 三、数学运算示例 ```cpp Eigen::Vector3d a(1,2,3), b(4,5,6); double dot_product = a.dot(b); // 点积 $1\times4 + 2\times5 + 3\times6 = 32$ Eigen::Vector3d c = a.cross(b); // 叉积 $(-3,6,-3)$ ``` #### 四、性能优化建议 1. **避免自动推导返回类型** 使用`auto`时可能产生临时对象,建议: ```cpp Eigen::MatrixXd fixed_mat = vec.reshaped(3,3); // 明确类型 ``` 2. **固定大小向量优先** 小尺寸向量应使用`Vector3d`等类型提升性能
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值