php 委托,PHP设计模式 - 委托模式

本文介绍了委托模式的概念,通过一个TeamLead类将writeCode任务委托给JuniorDeveloper类实现,以此来扩展功能而无需修改原有代码。示例代码展示了如何在PHP中实现委托模式,TeamLead类在构造时注入JuniorDeveloper实例,并通过它来执行writeBadCode方法,而对外保持writeCode方法的接口不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【一】模式定义

委托是对一个类的功能进行扩展和复用的方法。它的做法是:写一个附加的类提供附加的功能,并使用原来的类的实例提供原有的功能。

假设我们有一个 TeamLead 类,将其既定任务委托给一个关联辅助对象 JuniorDeveloper 来完成:本来 TeamLead 处理 writeCode 方法,Usage 调用 TeamLead 的该方法,但现在 TeamLead 将 writeCode 的实现委托给 JuniorDeveloper 的 writeBadCode 来实现,但 Usage 并没有感知在执行 writeBadCode 方法。

【二】UML类图

c9ecda0cc1121cc79ca71f31442f5d08.png

【三】示例代码

Usage.php

namespace DesignPatterns\More\Delegation;

// 初始化 TeamLead 并委托辅助者 JuniorDeveloper

$teamLead = new TeamLead(new JuniorDeveloper());

// TeamLead 将编写代码的任务委托给 JuniorDeveloper

echo $teamLead->writeCode();

TeamLead.php

namespace DesignPatterns\More\Delegation;

/**

* TeamLead类

* @package DesignPatterns\Delegation

* `TeamLead` 类将工作委托给 `JuniorDeveloper`

*/

class TeamLead

{

/** @var JuniorDeveloper */

protected $slave;

/**

* 在构造函数中注入初级开发者JuniorDeveloper

* @param JuniorDeveloper $junior

*/

public function __construct(JuniorDeveloper $junior)

{

$this->slave = $junior;

}

/**

* TeamLead 喝咖啡, JuniorDeveloper 工作

* @return mixed

*/

public function writeCode()

{

return $this->slave->writeBadCode();

}

}

JuniorDeveloper.php

namespace DesignPatterns\More\Delegation;

/**

* JuniorDeveloper 类

* @package DesignPatterns\Delegation

*/

class JuniorDeveloper

{

public function writeBadCode()

{

return "Some junior developer generated code...";

}

}

【四】测试代码

Tests/DelegationTest.php

namespace DesignPatterns\More\Delegation\Tests;

use DesignPatterns\More\Delegation;

/**

* DelegationTest 用于测试委托模式

*/

class DelegationTest extends \PHPUnit_Framework_TestCase

{

public function testHowTeamLeadWriteCode()

{

$junior = new Delegation\JuniorDeveloper();

$teamLead = new Delegation\TeamLead($junior);

$this->assertEquals($junior->writeBadCode(), $teamLead->writeCode());

}

}

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测和深度学习有一定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值