阶乘怎么用python写_请问结构动力学中常说的一阶和二阶,三阶频率或振型等是什么关系?...

本文深入探讨了结构振动的基本原理,包括自振频率与振型的概念、动力学方程及其解法。通过对多自由度系统的分析,解释了不同振型对结构响应的影响及如何评估高阶模态的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

练拳不练功,等于一场空。建议买本结构力学教材读读相关章节(推荐同济朱慈勉老师的《结构力学》)。

如没耐心看公式的,请直接读最后一段。

先说系统的自振频率。

以一个n自由度的系统为例,其自由振动的动平衡方程如下。此时系统既没有阻尼也没有外荷载的激励。

式中 m 和 k 分别为系统

equation?tex=n%5Ctimes+n 的质量和刚度矩阵,

equation?tex=v%27%27%28t%29

equation?tex=v%28t%29 分别对应系统各自由度的加速度与位移向量

equation?tex=%EF%BC%88n%5Ctimes1%EF%BC%89。0为零向量

equation?tex=%EF%BC%88n%5Ctimes1%EF%BC%89,对应自由振动没有外荷载激励。动力学里假设自由振动是简谐的,那么位移向量

equation?tex=v%28t%29 可以写成:

其中 v^ 为系统 n 个自由度的振幅向量。振幅是常数,是不随时间变化的,它描述了系统振动时总位移响应的形状。

equation?tex=%5Comega 是系统的自振频率,

equation?tex=%5Ctheta 是各自由度的初相角。

equation?tex=v%28t%29 是时间函数,其二阶导数为:

equation?tex=v%28t%29

equation?tex=v%27%27%28t%29 代入动平衡方程,化简后可得系统的特征值方程:

在数学上,要使得以上方程有非平凡解(即非零解,振幅向量v^全为0对应系统没有发生振动,问题本身就失去意义了),矩阵 [k-ω^2*m] 的行列式必须等于0,即:

把该行列式展开,其结果为一个N次

equation?tex=%5Comega%5E%7B2%7D 的多项式。求出它的n个根(又称特征值)并进行由低到高的排列后,ω1、ω2、...、ωn,即得系统由低阶到高阶(“由柔到刚”)的自振圆频率。

现在来看振型。

前面说

equation?tex=v%28t%29 是该系统振动时的位移向量。利用线性叠加原理,它可以分解成n个相互独立的振型。反过来,n个相互独立的振型也可通过线性叠加形成系统总的位移向量。振型是不随时间变化的,它表明某阶自振模态下,系统振动的形状。

假设以下悬臂体系只有三个水平自由度,由于多自由度体系自振频率个数与自由度数相等,那么

equation?tex=v%28t%29 可以分解成下图所示的三个振型:

equation?tex=%5Cphi_%7B1%7D%2C%5Cphi_%7B2%7D%2C%5Cphi_%7B3%7D(又称特征向量)。

则自由度1、2、3的位移向量

equation?tex=v_%7B1%7D%28t%29%2Cv_%7B2%7D%28t%29%2Cv_%7B3%7D%28t%29 可通过线性叠加原理分解为:

因此,系统振动时的总响应可看成是由不同振型组合、叠加而成的。

好比你的基因里有你爸的,也有你妈的。你爸是第一振型,你妈是第二振型。往上看,还有爷爷、奶奶,外公、外婆的等等。他们的基因在你基因中所占的“权重”是不一样的。好比在此例中,振形

equation?tex=%5Cphi_%7B1%7D%EF%BC%8C%5Cphi_%7B2%7D%EF%BC%8C%5Cphi_%7B3%7D在总响应

equation?tex=v%28t%29中的“权重”分别是

equation?tex=Y_%7B1%7D%28t%29

equation?tex=Y_%7B2%7D%28t%29

equation?tex=Y_%7B3%7D%28t%29一样。

现在来看某阶振形的贡献。

以有阻尼的多自由度体系的受迫振动为例,其动平衡方程为:

相较于无阻尼自由振动,此时系统多了阻尼(矩阵c)和质点荷载向量p(t)。

总位移向量

equation?tex=v%28t%29 仍可表示为n个振型的线性叠加,即:

对上式求一、二阶导可得速度向量

equation?tex=v%27%28t%29 、加速度向量

equation?tex=v%27%27%28t%29 ,先将它们带入动平衡方程,再将两边同乘以振型矩阵的转置矩阵

equation?tex=%5CPhi%5E%7BT%7D ,并利用振型正交性原理,可得到n个解耦的、“单自由度”的二阶常系数微分方程。其中第 k 个方程描述了该系统第 k 阶“单自由度”振动,即:

这n个解耦的微分方程可以频域求解(傅里叶变换法)也可以时域求解(杜哈梅积分、时域逐步积分),殊途同归的是,最终可求得各模态的广义坐标Y1(t)、Y2(t)、...、Yn(t)。再次通过线性叠加原理最终可得到系统总的位移向量

equation?tex=v%28t%29

上式中,

equation?tex=%5Cxi_%7Bn%7D 是系统第 n 阶振动的模态阻尼比,它是随自振频率

equation?tex=%5Comega_%7Bn%7D 单调增大的。以高层建筑为例,这种增大趋势是因为对于高阶 / 频振动,非结构单元(填充墙、幕墙等)对结构总阻尼的贡献越来越大。需要说明的是模态阻尼是为了计算模型的而引入的一种概念/手段,用它来近似模拟结构中未知的非线性能量耗损,它并不是结构的实际属性。

下图描述了一单自由度、质量-弹簧-阻尼系统在时刻

equation?tex=t+%3D0 受到单位冲量 / 锤击后,在不同模态阻尼比(5%、20%、80%)下的位移响应变化。可看到:对于相同激励,随着系统模态阻尼比增大,系统的振荡衰减更快,每周期耗散的能量也越大(结构应变能与位移的平方呈正比)。

由于系统各阶振动的广义质量、广义刚度、模态阻尼比和广义荷载都是不一样的,系统的总响应中,来自各阶模态的“贡献量”也是不一样的。对于高阶模态,当来自它们的贡献已足够小时就可以忽略。

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$--------------------------------打瞌睡的同学醒醒,敲黑板-------------------------------$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

最后说说对于建筑结构,为什么高阶模态的响应通常可以忽略。

首先,不论是风还是地震,虽在时域里看,激励看似杂乱无章(如一条地震波或风力时程),但它们都有自己的卓越周期。对时域信号进行傅氏变换 / 频谱分析后,就可以清楚地知道它们的频率构成情况。比如在哪些频段,激励的谐波成分是重要的,哪些频段是不重要的甚至是可忽略的。

另一方面,结构都有自己的自振频率。在自振频率上,一个很小的激励输入就可以引起很大幅度的振动(共振)。而在其他频率上,激励经过系统的传递是减小的。而在高频段,模态阻尼比已经足够大,系统复频响函数*(又称传递函数)的模已经足够小。同时,激励的能量也已经非常小,以至在该频段下,系统产生的输出量在总响应里所占的比例已经非常小。此时,我们就会说来自结构的高阶响应可以忽略。

注*:频响函数H(ω)为复函数,其绝对值|H(ω)|等于系统进入稳态振动后,响应与激励的振幅比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值