作者:Zarten
简介: 互联网一线工作者,尊重原创并欢迎评论留言指出不足之处,也希望多些关注和点赞是给作者最好的鼓励 !
概述
numpy中多维数组的索引与切片跟python中的列表类似,但最大的区别是,数组切片是原始数组的视图,也就是说对视图上的修改直接会影响到原始数组,因为numpy的主要是处理大数据,如果每次切片都进行一次复制,那对性能和内存是相当大的考验。
索引及切片
1.一维数组的索引及切片
一维数组索引
这个python的列表差不多
import numpy as np
zarten = np.array([1,2,3,4,5])
print(zarten[2])
一维数组切片
import numpy as np
zarten = np.array([1,2,3,4,5])
print(zarten[1:3])
修改
对索引和切片的修改会直接映射到原数组。
下面的所有的索引和切片的修改都会映射到原数组,下面的讲解将不再阐述。
import numpy as np
zarten = np.array([1,2,3,4,5])
zarten[4] = 999
zarten[1:3] = 888
print(zarten)
2.多维数组的索引及切片
多维数组索引
多维数组索引只需由外向内逐层选取
比如:多维数组 [[1 2 3] [4 5 6] [7 8 9]]
要选取6这个数字,索引为[1][2],也可写成 [1,2]
import numpy as np
zarten = np.array([[1,2,3], [4,5,6], [7,8,9]])
print(zarten[1][2])
print(zarten[1,2])
多维数组切片
多维数组的切片就有所不同了,比如:
zarten[:2, 1:]
前面的 :2 切的是行, 1: 切的是列。行是从上到下,列是从左到右
import numpy as np
zarten = np.array([[1,2,3], [4,5,6], [7,8,9]])
print(zarten)
print('*' * 50)
print(zarten[:2, 1:])
3.布尔型索引及切片
布尔型索引
布尔型索引指的是一个布尔型ndarray数组(一般为一维)对应另一个ndarray数组的每行,布尔型数组的个数要必须与另一个多维数组的行数一致。若布尔型数组内的某个元素为True,则选取另一个多维数组的行,反之不选取。
这样说可能太抽象,下面代码说明就很好理解了。
下面代码是选取第一行和最后一行
import numpy as np
zarten = np.random.randn(5,4)
print(zarten)
print('*' * 50)
zarten_bool = np.array([True, False, False, False, True])
print(zarten[zarten_bool])
假设每一行代表一个字母的信息,分别是A B C D A
现在需要选择A字母的对应的行信息,可以看到第一行和最后一行是A字母的信息
通过比较操作可以生成关于字母A的布尔型数组
import numpy as np
zarten = np.random.randn(5,4)
print(zarten)
print('*' * 50)
zarten_1 = np.array(['A', 'B', 'C', 'D', 'A'])
print(zarten[zarten_1 == 'A'])
条件索引
上面中默认是True的就选取,False就不选取。也可以设置条件,如:
!= 不等于
& 与运算
| 或运算
!= 示例
import numpy as np
zarten = np.random.randn(5,4)
print(zarten)
print('*' * 50)
zarten_1 = np.array(['A', 'B', 'C', 'D', 'A'])
print(zarten[zarten_1 != 'A'])
& 示例
import numpy as np
zarten = np.random.randn(5,4)
print(zarten)
print('*' * 50)
zarten_1 = np.array(['A', 'B', 'C', 'D', 'A'])
cond = (zarten_1 == 'B') & (zarten_1 == 'C')
print(cond)
print(zarten[cond])
由上图可以看到 (zarten_1 == 'B') & (zarten_1 == 'C') ,两个布尔型数组&后全部为False,固没有选取任何的一行。
布尔型切片
跟多维数组的切片类似,[行, 列]第一个为行,第二个为列切片。下面代码将很好的说明
zarten = np.random.randn(5,4)
print(zarten)
print('*' * 50)
zarten_1 = np.array(['A', 'B', 'C', 'D', 'A'])
print(zarten[zarten_1 == 'A'])
print('*' * 50)
print(zarten[zarten_1 == 'A', 1:3]) #切片
4.花式索引
花式索引
花式索引跟布尔型索引类似,花式索引是可以使用整数数组进行索引,可以选取任意的行,跟布尔型索引的[True, False , False]类似,可以任意选取。花式索引更方便些。
注意:花式索引是传入整数数组。若为负数,将从末尾开始选取
例如现在选取第一行和第二行。下面将布尔型索引和花式索引做一个对比
import numpy as np
zarten = np.random.randn(5,4)
print(zarten)
print('*' * 50)
#选取第一行和第二行
#布尔型索引做法
zarten_bool = np.array([True, True, False, False, False])
print(zarten[zarten_bool])
print('*' * 50)
#花式索引做法
print(zarten[[0, 1]])
花式切片
跟上面的类似,看代码一目了然
import numpy as np
zarten = np.random.randn(5,4)
print(zarten)
print('*' * 50)
#选取第一行和第二行
#布尔型索引做法
zarten_bool = np.array([True, True, False, False, False])
print(zarten[zarten_bool])
print('*' * 50)
#花式索引做法
print(zarten[[0, 1], 1:3])