时序ARIMA模型
引言
自回归移动平均模型(ARIMA)是一种常用于时间序列分析和预测的统计模型。它包括了自回归(AR)和移动平均(MA)两个组成部分,并结合了差分(Integrated)操作。在本文中,我们将探讨ARIMA模型的公式及其含义,以帮助读者更好地理解这一重要的时间序列模型。
ARIMA模型的基本概念
ARIMA模型的名称反映了其三个主要组成部分:
-
自回归(AR,Autoregressive): 表示当前观测值与过去一系列观测值之间存在线性关系。自回归阶数(p)定义了模型中考虑的过去观测值的数量。
-
差分(I,Integrated): 表示对时间序列进行差分操作,即当前观测值与前一观测值之差。差分阶数(d)表示进行了多少次差分操作,以使时间序列变得平稳。
-
移动平均(MA,Moving Average): 表示当前观测值与过去一系列观测值的白噪声误差之间存在线性关系。移动平均阶数(q)定义了模型中考虑的白噪声误差的数量。
ARIMA模型的一般表示为ARIMA(p, d, q)。
ARIMA模型公式
1. AR部分
自回归部分的公式表示为:
Xt=c+ϕ1Xt−1+ϕ2Xt−2+…+ϕpXt−p+ϵt \begin{equation} X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + \epsilon_t\end{equation} Xt=c+ϕ1Xt−1+ϕ2Xt−2+…+ϕpXt−p+ϵt
其中:
- XtX_tX