时序分析中的去趋势化方法
时序分析是研究随时间变化的数据模式的一门学科。在时序数据中,趋势是一种随着时间推移而呈现的长期变化趋势,去趋势化是为了消除或减弱这种趋势,使数据更具平稳性。本文将简单介绍时序分析中常用的去趋势化方法,并通过代码演示每种方法的应用。
1. 引言
时序分析在金融、经济学、气象学等领域中广泛应用,而去趋势化是时序分析的一个重要步骤。通过去趋势化,我们可以更好地理解和分析时间序列中的周期性、季节性和随机波动。以下是一些常见的去趋势化方法。
2. 去趋势化方法
创建示例时间序列数据
#
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from statsmodels.tsa.seasonal import STL
# 创建示例时间序列数据
np.random.seed(42)
# 生成日期范围
date_rng = pd.date_range(start='2022-01-01', end='2022-12-31', freq='D')
# 生成随机的趋势成分
trend_component = 0.1 * np.arange(len(date_rng))
# 生成季节性成分
seasonal_component = 5 * np.sin(2 * np.pi * np.arange(len(date_rng)) / 365 *