时间序列预测——BiLSTM模型
时间序列预测是指利用过去的观测数据来预测未来一段时间内的数据走势。BiLSTM(双向长短期记忆网络)是一种常用的神经网络模型,用于处理时间序列数据,并具有很好的预测性能。本文将介绍BiLSTM模型的理论、优缺点,与LSTM、GRU的区别,并分别用Python实现BiLSTM的单步预测和多步预测的完整代码,并进行总结。
1. BiLSTM模型理论及公式
BiLSTM是一种深度学习模型,用于处理时间序列数据。与传统的循环神经网络(RNN)相比,BiLSTM引入了门控机制,能够更好地捕捉序列中的长期依赖关系。
1.1 LSTM单元
在介绍BiLSTM之前,我们先了解一下LSTM(长短期记忆网络)单元。LSTM单元由输入门(input gate)、遗忘门(forget gate)、输出门(output gate)和细胞状态(cell state)组成。其主要公式如下:
- 输入门:it=σ(Wxixt+Whiht−1+Wcict−1+bi)i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)it=σ(Wxixt+Whiht−1+Wcict−1+bi)
- 遗忘门:ft=σ(Wxfxt+Whfht−1+Wcfct−1+bf)f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)ft=σ(Wxfxt+Whfht