神经网络 python sklearn_Python-sklearn常用算法分类以及调用列表

本文概述了Python机器学习库Sklearn中可用的各种算法,包括分类(如LDA, QDA, SVM, KNN, NN, Naive Bayes, Decision Tree, Ensemble Methods)、回归(如OLS, Ridge, SVR, Lasso, Elastic Net, Bayesian Regression, Logistic Regression, Robust Regression, Polynomial Regression)、聚类(如Knn, KMeans, Hierarchical Clustering)和降维(如PCA, KernelPCA, Factor Analysis)。此外,还提到了文本挖掘算法和模型优化方法,以及数据预处理技术。" 129620856,8753399,Python:删除文件中字符并保存教程,"['python', '开发语言']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总的来说,Sklearn可实现的函数或功能可分为以下几个方面:分类算法

回归算法

聚类算法

降维算法

文本挖掘算法

模型优化

数据预处理

最后再说明一下可能不支持的算法(也可能是我没找到,但有其他模块可以实现)

分类算法线性判别分析(LDA)>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)

二次判别分析(QDA)>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis >>> qda = QuadraticDiscriminantAnalysis(store_covariances=True)

支持向量机(SVM)>>> from sklearn import svm >>> clf = svm.SVC()

Knn算法>>> from sklearn import neighbors >>> clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)1

2

3

神经网络(nn)>>> from sklearn.neural_network import MLPClassifier >>> clf = MLPClassifier(solver='lbfgs', alpha=1e-5, ... hidden_layer_sizes=(5, 2), random_state=1)

朴素贝叶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值