题目描述:
给定一个二叉树,返回它的 前序 遍历。
示例:
输入: [1,null,2,3]
1
\
2
/
3
输出: [1,2,3]
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
个人思路:
递归算法很简单,按照顺序D->L->R即可,还是一个原则,只对root节点进行处理,这里是将节点值添加至输出列表中。
迭代算法与94. 二叉树的中序遍历类似,只需要注意添加node.val的位置,改为先处理根节点了。
具体代码如下:
# Definition for a binary tree node.
from typing import List
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
# 递归
class Solution:
def preorderTraversal(self, root: TreeNode) -> List[int]:
if not root:
return []
results = []
def helper(root):
if not root:
return
results.append(root.val)
helper(root.left)
helper(root.right)
return results
# 迭代
class Solution:
def preorderTraversal(self, root: TreeNode) -> List[int]:
if not root:
return []
results = []
node = root
stack = []
while node or stack:
while node:
stack.append(node)
results.append(node.val) # 首先对父节点进行处理
node = node.left
node = stack.pop() # 不存在左子树
node = node.right # 最后处理右子树
return results
通过前序和中序遍历代码,不难看出,在对父节点的处理完成于第二重while循环中,而完成内部二重循环后,出来的节点不再具有左子树,此时可以完成对左节点的处理,随后再对右节点进行处理。而若想先对右节点进行处理,则相应可以将二重while循环中的node.left改为node.right,此时,退出循环后的节点将不再存在右子树,此时可对右节点进行处理,以先于左节点进行处理。
这个特点在二叉搜索树中应用很多,只需要在相应位置修改处理方式即可。