
大家好,我是大老李。这集节目属于补课,因为我们讲了半天质数,还没有讲质数定理,虽然我在节目里已经多次提到质数定理。
那什么是质数定理?它是一系列有关质数数量和分布情况的定理和猜想。其中有一个最主要命题,被证明后,人们称其为“质数定理”。
有关质数数量,古希腊人就知道存在无穷多个质数。欧几里得给出过一个很漂亮的反证法的证明,相信很多人都看到过,我不再赘述。知道质数有无穷多个后,我们可以追问:质数的分布情况如何?而这其中最基础的问题就是前n个整数里,有多少个质数呢?
关于这个问题,欧拉曾作出些贡献。欧拉考虑了这样一个乘法级数,取每个质数除以其自身减去1,然后相乘。比如前几个质数是2,3,5,7,11,那么这个级数的前几项就是
欧拉用了一种虽不严格,但十分巧妙的方法证明了这一串数字乘起来等于全体自然数倒数的和 ,也就是
欧拉乘积公式的不严格推导方法(参考:https://zhuanlan.zhihu.com/p/58832513 ):
令:
以上等式两边乘以
等式(1) 减去 等式(2):
等式(3)两边乘以
等式(3) 减去 等式(4):
式(5)右边,分母为2和3倍数的项都被消去了。重复以上过程,左边不断乘以质数的倒数,右边可以消去分母有该质数因子的项。所以,最终可得:
将上式左边常数系数移到右边:
得证。
而欧拉的这个结果也是十分不寻常的,后世把这个公式称为“欧拉乘积公式”,因为左边是一个乘积形式的级数。它的不寻常之处在于:
首先,对全体自然数的和,它被称为“调和级数”,我们知道是发散的,也就是可以累加到任意大,那么欧拉乘积公式也就间接证明了质数有无穷多个。因为如果只有有限多个质数,就不可能相乘到任意大。
第二个是:这个级数左边是相乘,右边是加法级数,这种形式的级数等式是很罕见的。更妙的是,乘法级数是关于全体质数的,右边是关于全体自然数的级数。这就能帮我们从这个公式里窥探一些质数的性质。我们已经能从这个公式里看到有无穷多个质数,而我们也知道调和级数前n项和约等于
第三个,也最重要一点是欧拉乘积公式还能扩展,欧拉发现,公式中可以通过指数进行扩展,即:
而且欧拉和后来许多大数学家还发现x不但可以扩展到自然数,还可以扩展到全体实数甚至全体复数平面上。当然,扩展到复平面上以后,乘积公式左右两边的级数定义还是需要修改的。但不管怎样,这是数学中非常重要的一个公式。
后来,人们把这个指数x作为函数自变量,把乘积公式中左边的乘积级数称为“欧拉(乘积)函数”(当然,这只是无数个欧拉函数之一)。而右边这个加法级数,即自然数x次方的倒数和,也作为一个x的函数,而它扩展到复数定义域后,就是大名鼎鼎的黎曼
黎曼猜想就是问黎曼
再回过来讲质数定理。欧拉之后,在1798年,法国数学家勒让德(1752年9月18日-1833年1月10日)第一个公开提出了有关质数分布的猜想,也是质数定理的一个原型。他猜想前x个自然数中,质数的数量约为
这里,数学家还定义了一个函数,名为质数数量函数,符号是
但我之前为什么说第一个“公开”提出质数猜想的人是勒让德呢?因为还有一个非公开提出这个猜想的人,就是高斯。在勒让德提出他的猜想后的半个多世纪后的1849年,高斯在一封给他的学生,德国天文学家恩客(Encke)的信中说,他大约在15,16岁时就猜想了一个有关质数分布数量的命题:他猜想
但高斯在72岁的时候,说你15、16岁时就提出这个猜想,你怎么让我们相信呢?但人们还真信,因为72岁的高斯早已功成名就,无须再去争夺这个荣誉。而高斯其他的一些数学成果中,也透露出他对质数分布的研究成果已经远超同时代其他人。
而且高斯本人也不只一次出现这种,有某项研究成果但秘而不宣的情况,这可能是他个性使然。欧拉是完全与其相反的。每当欧拉有任何一个发现,哪怕证明不严谨,他也很愿意把这个发现公布出来,供大家一起讨论,所以后来欧拉被称为“所有人的老师”。
而高斯则相反,极度谨慎、保守和完美主义。当高斯有了一些发现,但没时间继续研究给出完整证明时,他就不会公布他的想法或猜想。总之,这是个性使然。
还有另一个证据能证明高斯有过对素数定理的深入研究,在同一封信中,高斯说他后来找出了一个更好的对
这个定积分函数可以这样理解,你在纸上画一个

高斯选择用记号
这是微积分里面有意思的一件事情,当给定一个函数时,求导函数,好像毫无困难,只要根据函数加减乘除和链式求导规则,一步步来,必然能写出导函数结果。但是给定一个函数,求其原函数,就没有一个确切的求解步骤,需要很多技巧,而有些函数没有一个可以写出来的原函数形式,没有解析解。
这样我们有三个对质数数量函数

你会发现勒让德的近似函数图像最接近
高斯在那封信中补充说,他认为他的
后来证明,高斯的判断完全是对的。之后的进展大致进展是这样,数学家考虑了这样一个极限,就是
如果
1750年,俄罗斯数学家切比雪夫证明了,这个极限若存在,则必为1。并且他还证明, 对任意x,这个比值的范围是:
他的这个结论已经足以推出一个名为“伯特兰—切比雪夫定理”的命题:
对任意自然数n,在n到2n之间,至少存在一个质数。
1859年,黎曼提交了一篇关于素数分布的非常重要的报告《论小于给定数值的素数个数》。黎曼在报告中使用了创新的想法,将
沿着黎曼的思路,1896年法国数学家雅克·阿达马和比利时数学家德·拉瓦莱·普桑先后独立给出前述极限趋向于1的证明。因为这命题是关于质数分布的第一个也是非常重要的命题,因此后世称其为质数定理。
但事情还没完,后面还有很多值得继续思考的问题。首先我们发现但知道
而且进一步考察后,你会发现
还有,对比较小的x,
后来,利特伍德的学生Stanley Skewes在1933证明,如果“黎曼假设”是正确的,那么最多在
这个数字是如此之大,在葛立恒数出现之前,它是数学论文中出现过的最大的有意义的数字,被称为“斯古斯数”。
现在斯古斯数的上界已经被缩小到
另外,虽然
这其实是蛮恐怖的一个事实,虽然这两个函数大小关系会发生无数次翻转,但是其差的绝对值可以任意大。如果将这两个函数比作牛郎和织女的话,那么他们虽然可以无数次碰面,但每次碰面后,都可能要互相分开更为遥远的距离才能再次见面。
好了,总结一下质数定理:
- 质数定理是说前x自然数中的质数数量
的值约为
,已经证明两者比值极限为1。但是
是发散的。
- 根据质数定理,我们知道前x个自然数中的质数占比约为
。
- 关于
有个更好的估计函数叫
,即对数积分,不但
极限为1,
与
的差值也是忽大忽小,大小关系发生无数次翻转。但是第一次翻转的位置是如此遥远,以至于人类至今没有找到。
有关质数定理的内容,说了不少了,再说说几个有关质数分布未能解决的命题:
- 孪生质数猜想:是否有无穷多对质数相差2呢?这个猜想是大家比较熟悉的。目前最好结果是已知无穷多对质数,其差值小于246。
- 有点像切比雪夫-贝特兰定理:是否在任意两个完全平方数之间至少有一个质数?即,
与
之间必有一个质数?猜想是这样,但未能证明。
- 素数最大间隔问题:前n个自然数中,相邻两个质数的最大间隔是多少?这个问题埃尔德什曾提出过一个猜想,并悬赏1万美元。具体内容可以听我之前的一期节目:“素数的邻居住多远?”
有关质数定理就聊到这里,我最大感想还是质数的神秘性,质数的分布虽然有规律,但是出人意料的地方也不少。而欧拉的乘积公式能把质数与自然数完美的连接起来,这个公式值得各位好好玩味。下期再见!
喜马拉雅:https://www.ximalaya.com/keji/6310606/
微信关注:dalaoli_shuxue
B站: https://space.bilibili.com/423722633
电邮:dalaoliliaoshuxue@gmail.com
参考链接:
https://en.wikipedia.org/wiki/Prime_number_theorem
https://mathworld.wolfram.com/PrimeNumberTheorem.html
https://www.britannica.com/science/prime-number-theorem
https://www.math.fsu.edu/~quine/ANT/2010%20Goldstein.pdf
https://zh.wikipedia.org/zh-cn/%E6%AC%A7%E6%8B%89%E5%87%BD%E6%95%B0
10000sience:欧拉乘积公式及证明