python贪心算法最短路径_贪心算法《最短路径》 - osc_gh9d8pz0的个人空间 - OSCHINA - 中文开源技术交流社区...

本文介绍了一个使用Python实现的贪心算法来解决从一个城市出发到达所有城市最短路径的问题。通过初始化、输入数据和核心的贪心算法步骤,逐步更新每个城市的最短路径,并利用二维矩阵记录城市间距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:

存在几个城市1~n;每个城市任意连向其他城市。并且,路程也是不尽相同的。若从一个城市出发,去各个城市,则去各个城市每一个城市的最短路程计算出来。

如下是几个城市的地图:

题目分析:一个城市可能有多个路径,但是寻找最小的路径却不容易。

算法:贪心算法:从1城市出发,到达4和5城市最小路径的充分必要条件是到达前面每一个城市都是最短路径——及贪心算法中局部最优解,构成全局最优解

数据结构:用map[][]这样的矩阵记录每个城市的路的大小。dist[]记录每个城市的最短路程。p[]记录前一个城市,这样就能找到全部路线。flag[]记录

每个城市是否找到最短的路程。免得重复查找。

1.初始化部分

void init(int map[][Max], int dist[], int p[], bool flag[])

{

cin >> n;

for (int i = 0; i <= n; i++)

{

p[i] = -1;

flag[i] = false;  //当flag为假时,则还不为最短路程

dist[i] = Maxnum;

for (int j = 0; j <= n; j++)

{

map[i][j] = Maxnum;

}

}

//操作

p[1] = 0;

dist[1] = 0;

map[1][1] = 0;

flag[1] = true;

}

将map[][]内全部初始化为极大的数

注意:在这里先让1城市带入了。

2.输入块儿

void cinfun(int map[][Max], int dist[], int p[], bool flag[])

{

cin >> m;

//数据的输入

int num = m;

while (num--)

{

int u, k, l;

cin >> u >> k >> l;

map[u][k] = l;

}

}

3.寻找在flag[]为假中dist[]的最小的城市。并,找到与他相连的城市。比较相连城市的目前的dist[]去该城市的dist[]加上这两个城市的距离。

若小,则说明走该城市到相连城市是更短的路径。(核心!!!!)

void minfun(int map[][Max], int dist[], int p[], bool flag[])

{

for (int i = 2; i <= n; i++)

{

if (dist[i] > map[1][i])

{

dist[i] = map[1][i];

p[i] = 1;

}

}

m--;

while (m--)

{

//算法:在V_S中寻找最小路径x。

int min = 0;

for (int i = 1; i <= n; i++)

{

if (dist[i] < dist[min]&&!flag[i]) min = i;

}

//通过dis[k]>dist[x]+map[x][k]时改变该路程

for (int i = 1; i <= n; i++)

{

if (!flag[i])

{

if (map[min][i] != Maxnum)

{

if (dist[i] > dist[min] + map[min][i])

{

dist[i] = dist[min] + map[min][i];

p[i] = min;

}

}

}

}

flag[min] = true;

}

}

代码如下:

#include

using namespace std;

//数据结构Map记录路线情况,

//dist[]记录最短路径,

//q[]记录前驱,

//flag[]记录是否为已经是最短路径

#define Max 100

#define Maxnum 1000

int map[Max][Max];

int dist[Max], p[Max];

bool flag[Max];

int n;

int m;

void init(int map[][Max], int dist[], int p[], bool flag[]);

void cinfun(int map[][Max], int dist[], int p[], bool flag[]);

void minfun(int map[][Max], int dist[], int p[], bool flag[]);

int main()

{

//初始化

init(map, dist, p, flag);

//输入数据

cinfun(map, dist, p, flag);

//最小值

minfun(map, dist, p, flag);

for (int i = 1; i <= n; i++)

{

cout << "城市:" << i << "前一个城市:" << p[i] << endl;

cout << "最短路程是:" << dist[i] << endl << endl;

}

return 0;

}

void init(int map[][Max], int dist[], int p[], bool flag[])

{

cin >> n;

for (int i = 0; i <= n; i++)

{

p[i] = -1;

flag[i] = false;  //当flag为假时,则还不为最短路程

dist[i] = Maxnum;

for (int j = 0; j <= n; j++)

{

map[i][j] = Maxnum;

}

}

//操作

p[1] = 0;

dist[1] = 0;

map[1][1] = 0;

flag[1] = true;

}

void cinfun(int map[][Max], int dist[], int p[], bool flag[])

{

cin >> m;

//数据的输入

int num = m;

while (num--)

{

int u, k, l;

cin >> u >> k >> l;

map[u][k] = l;

}

}

void minfun(int map[][Max], int dist[], int p[], bool flag[])

{

for (int i = 2; i <= n; i++)

{

if (dist[i] > map[1][i])

{

dist[i] = map[1][i];

p[i] = 1;

}

}

m--;

while (m--)

{

//算法:在V_S中寻找最小路径x。

int min = 0;

for (int i = 1; i <= n; i++)

{

if (dist[i] < dist[min]&&!flag[i]) min = i;

}

//通过dis[k]>dist[x]+map[x][k]时改变该路程

for (int i = 1; i <= n; i++)

{

if (!flag[i])

{

if (map[min][i] != Maxnum)

{

if (dist[i] > dist[min] + map[min][i])

{

dist[i] = dist[min] + map[min][i];

p[i] = min;

}

}

}

}

flag[min] = true;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值