python constraint 方程组_求解多变量、不等式约束的多方程组

博主试图用scipy和线性规划解决含多变量的问题,给出一组变量X范围及多个方程,尝试通过特定方式求解,但认为方法有误。博主询问如何定义问题以获接近上限的最大值,以及如何用scipy定义下限,也愿接受其他解决办法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我试图用scipy和线性规划来解决一个有很多变量的问题。我有一组变量X,它是0.5到3之间的实数,我必须解下列方程:346 <= x0*C0 + x1*C1 + x2*C2 +......xN*CN <= 468

25 <= x0*p0 + x1*p1 + x2*p2 +......xN*pN <= 33

12 <= x0*c0 + x1*c1 + x2*c2 +......xN*cN <= 17

22 <= x0*f0 + x1*f1 + x2*f2 +......xN*fN <= 30

数字C0…CN,p0…pN,C0…CN,f0…fN已经给我了。我试图通过以下方式解决这个问题:

^{pr2}$

方程的解释A_ub的第一行与b_ub相同,因为我们试图使方程最大化,并确保它在给定的边界范围内,即468和346,这意味着我希望得到的值尽可能接近上限。在

我把[-34, -56, -32, -21, -24, -16, -19, -22, -30, -27, -40, -33]放在A_ub中,-346放在b_ub中,逻辑如下:

-346 > -(x0*C0 + x1*C1 + x2*C2 +......xN*CN)这将解决方程的下界问题。我对其他人也一样。在

但我觉得我的方法是错误的,因为我得到的答案是0.425代表{},而{}是{}的值

x的上限为3,下限为0.5

如何定义如上所示的问题,以获得接近468的最大值,同时记住上限?如何使用scipy定义下限?我是第一次研究线性规划,所以我可能错过了一些可以帮助我的想法。在

我也愿意接受任何其他的解决办法。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值