曲线积分与曲面积分总结_【心得篇】考研常用的多元积分策略

本文聚焦于考研数学中的多元积分重点——格林公式、高斯定理和斯托克斯定理。这些公式分别将闭合曲线积分转化为二重积分、曲面积分转化为三重积分,以及空间曲线积分转化为曲面积分。在解题时,关键在于正确补充积分区域并处理特殊情况,如不满足条件的闭合曲线或曲面。掌握这三个公式,能有效应对考研中的多元积分问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

d4b1300a46a2b7f8fbf86366815bad16.png

数学一的高等数学部分实际上是全是数学分析的内容,而微积分又是数学分析的主体。本文的重点是微积分的重点之一——积分。积分的一般方法是通过换元转化成简单形式的积分,然后根据基本积分表求解,我总结的基本积分表如下:

本文不会讲述一元积分的方法{凑微分、简单换元},二重积分{转化为累次积分}或三重积分{先一后二或先二后一},只讲曲线积分和曲面积分。更具体的说,其实想讲的就是三大公式,即格林公式,高斯定理和斯托克斯定理

格林公式

格林公式实现了第二型闭合曲线积分平面二重积分的转化。

使用条件:l是逆时针的闭合曲线,P和Q的一阶偏导在闭合曲线l所围成的平面内连续。

考研遇到的一些题目中,P、Q的表达式含分母,且闭合曲线内含原点,因此不满足条件;此时可以先在内部挖一个顺时针闭合曲线围成的洞,凑成符合要求的闭合曲面,然后删去在新增曲线上的积分即可。这个过程看似复杂,但题目往往会为你凑得很好,只需光速解之。另外一种常见的情形时直接补线再用格林,不赘述了。

高斯定理

高斯定理实现了第二型闭合曲面积分空间三重积分的转化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值