
数学一的高等数学部分实际上是全是数学分析的内容,而微积分又是数学分析的主体。本文的重点是微积分的重点之一——积分。积分的一般方法是通过换元转化成简单形式的积分,然后根据基本积分表求解,我总结的基本积分表如下:
本文不会讲述一元积分的方法{凑微分、简单换元},二重积分{转化为累次积分}或三重积分{先一后二或先二后一},只讲曲线积分和曲面积分。更具体的说,其实想讲的就是三大公式,即格林公式,高斯定理和斯托克斯定理。
格林公式
格林公式实现了第二型闭合曲线积分向平面二重积分的转化。
使用条件:l是逆时针的闭合曲线,P和Q的一阶偏导在闭合曲线l所围成的平面内连续。
考研遇到的一些题目中,P、Q的表达式含分母,且闭合曲线内含原点,因此不满足条件;此时可以先在内部挖一个顺时针闭合曲线围成的洞,凑成符合要求的闭合曲面,然后删去在新增曲线上的积分即可。这个过程看似复杂,但题目往往会为你凑得很好,只需光速解之。另外一种常见的情形时直接补线再用格林,不赘述了。
高斯定理
高斯定理实现了第二型闭合曲面积分向空间三重积分的转化。