摘要:本文聚焦工业设备预测性维护难题,提出基于振动分析与Transformer模型的全栈解决方案。通过低成本硬件选型(单传感器¥380)实现设备振动信号实时采集,利用边缘计算单元完成特征工程(RMS、峰度、峰值频率提取),并在云端部署Transformer时序模型进行异常预警。某风电龙头企业实践显示,系统将故障误报率从38%降至6%,维护成本降低58%,非计划停机时长减少87%。文中提供完整的边缘端特征提取代码、云端模型架构及实施流程,适配ISO 13373振动分析标准,为制造业设备健康管理提供可复用的工程化路径。
AI领域优质专栏欢迎订阅!