工业预测性维护实战:振动分析+Transformer预警系统构建指南

摘要:本文聚焦工业设备预测性维护难题,提出基于振动分析与Transformer模型的全栈解决方案。通过低成本硬件选型(单传感器¥380)实现设备振动信号实时采集,利用边缘计算单元完成特征工程(RMS、峰度、峰值频率提取),并在云端部署Transformer时序模型进行异常预警。某风电龙头企业实践显示,系统将故障误报率从38%降至6%,维护成本降低58%,非计划停机时长减少87%。文中提供完整的边缘端特征提取代码、云端模型架构及实施流程,适配ISO 13373振动分析标准,为制造业设备健康管理提供可复用的工程化路径。



AI领域优质专栏欢迎订阅!

DeepSeek深度应用

机器视觉:C# + HALCON

人工智能之深度学习

AI 赋能:Python 人工智能应用实战

AI工程化落地与YOLOv8/v9实战


在这里插入图片描述

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值