摘要:在工业视觉领域,构建高质量数据集是实现精准目标检测的关键前提。本文围绕YOLO模型在工业场景中的应用,详细阐述工业数据采集规范,给出不同缺陷类型对应的硬件配置方案。深入探讨小目标增强技术,通过代码实战展示Mosaic等增强手段对提升小目标检出率的效果。介绍缺陷生成算法,包含物理仿真法等,提供完整代码示例并展示执行结果。同时,梳理从原始素材到数据集验证的全流程,为工业级YOLO数据集制作提供实操性强的指南,助力工业视觉项目的高效落地。
AI领域优质专栏欢迎订阅!
摘要:在工业视觉领域,构建高质量数据集是实现精准目标检测的关键前提。本文围绕YOLO模型在工业场景中的应用,详细阐述工业数据采集规范,给出不同缺陷类型对应的硬件配置方案。深入探讨小目标增强技术,通过代码实战展示Mosaic等增强手段对提升小目标检出率的效果。介绍缺陷生成算法,包含物理仿真法等,提供完整代码示例并展示执行结果。同时,梳理从原始素材到数据集验证的全流程,为工业级YOLO数据集制作提供实操性强的指南,助力工业视觉项目的高效落地。
AI领域优质专栏欢迎订阅!