
矩阵分解
鉴于此,今天我们来讨论矩阵的另外一种分解——秩一分解,“秩一分解”这个名词是自己瞎取得,不过用来形容矩阵的这种分解形式却是极好的。
证明:由相抵标准型理论可得,存在非异矩阵
从而
显然
现反设
容易知道,这是矛盾。
本题还有一种表述是:秩为r的矩阵可以分解为一个秩为k和一个秩为r-k的矩阵之和。

下面我们来讨论实对称矩阵的秩一分解:
其中
其中
更一般地,我们有对任意实系数多项式
证明:由

证明:
其中
愿满身朝气,心向阳光鸭!

矩阵分解
鉴于此,今天我们来讨论矩阵的另外一种分解——秩一分解,“秩一分解”这个名词是自己瞎取得,不过用来形容矩阵的这种分解形式却是极好的。
证明:由相抵标准型理论可得,存在非异矩阵
从而
显然
现反设
容易知道,这是矛盾。
本题还有一种表述是:秩为r的矩阵可以分解为一个秩为k和一个秩为r-k的矩阵之和。
下面我们来讨论实对称矩阵的秩一分解:
其中
其中
更一般地,我们有对任意实系数多项式
证明:由
证明:
其中