pandas多列同时赋值_pandas-赋值操作

这篇博客介绍了如何使用Pandas进行数据操作,包括通过loc, iloc, ix选择指定位置进行赋值,使用insert方法插入列,利用drop和pop方法删除和弹出列。此外,还展示了如何根据条件批量修改数据,并添加新列。" 46583375,4985481,JAVA InputStream:网络数据帧的自动分片处理,"['JAVA网络编程', '数据处理', 'TCP/IP', 'bytearray操作']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,pandas操作主要有对指定位置的赋值,如上一篇中的数据选择一样,根据loc,iloc,ix选择指定位置,直接赋值

2,插入,insert方法,插入行和列

3,添加

4,删除 drop方法

5,弹出 pop方法

In [1]:

import pandas as pd

import numpy as np

In [53]:

dates = np.arange(20190809,20190815)

df1 = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=["A","B","C","D"])

df1

Out[53]:

A

B

C

D

20190809

0

1

2

3

20190810

4

5

6

7

20190811

8

9

10

11

20190812

12

13

14

15

20190813

16

17

18

19

20190814

20

21

22

23

In [20]:

df1.iloc[2,2]

Out[20]:

10

In [44]:

df1.iloc[2,2] = 100

df1

Out[44]:

A

B

C

D

20190809

0

1

2

3

20190810

4

5

6

7

20190811

8

9

100

11

20190812

12

13

14

15

20190813

16

17

18

19

20190814

20

21

22

23

In [40]:

df1.loc[20190810,"B"]=200

df1

Out[40]:

A

B

C

D

20190809

0

1

2

3

20190810

4

200

6

7

20190811

8

9

10

11

20190812

12

13

14

15

20190813

16

17

18

19

20190814

20

21

22

23

In [54]:

df1[df1.A>10]=0

df1

Out[54]:

A

B

C

D

20190809

0

1

2

3

20190810

4

5

6

7

20190811

8

9

10

11

20190812

0

0

0

0

20190813

0

0

0

0

20190814

0

0

0

0

In [55]:

df1.A[df1.A==0]=100

df1

Out[55]:

A

B

C

D

20190809

100

1

2

3

20190810

4

5

6

7

20190811

8

9

10

11

20190812

100

0

0

0

20190813

100

0

0

0

20190814

100

0

0

0

In [56]:

#插入一列

df1["E"]=10

df1

Out[56]:

A

B

C

D

E

20190809

100

1

2

3

10

20190810

4

5

6

7

10

20190811

8

9

10

11

10

20190812

100

0

0

0

10

20190813

100

0

0

0

10

20190814

100

0

0

0

10

In [59]:

df1["F"]=pd.Series([1,2,3,4,5,6],index=dates)

df1

Out[59]:

A

B

C

D

E

F

20190809

100

1

2

3

10

1

20190810

4

5

6

7

10

2

20190811

8

9

10

11

10

3

20190812

100

0

0

0

10

4

20190813

100

0

0

0

10

5

20190814

100

0

0

0

10

6

In [62]:

#添加一行

df1.loc[20190815,["A","B","C"]]=[5,6,8]

df1

Out[62]:

A

B

C

D

E

F

20190809

100.0

1.0

2.0

3.0

10.0

1.0

20190810

4.0

5.0

6.0

7.0

10.0

2.0

20190811

8.0

9.0

10.0

11.0

10.0

3.0

20190812

100.0

0.0

0.0

0.0

10.0

4.0

20190813

100.0

0.0

0.0

0.0

10.0

5.0

20190814

100.0

0.0

0.0

0.0

10.0

6.0

20190815

5.0

6.0

8.0

NaN

NaN

NaN

In [65]:

s1=pd.Series([1,2,3,4,5,6],index=["A","B","C","D","E","F"])

s1.name="S1"

df2 = df1.append(s1)

df2

Out[65]:

A

B

C

D

E

F

20190809

100.0

1.0

2.0

3.0

10.0

1.0

20190810

4.0

5.0

6.0

7.0

10.0

2.0

20190811

8.0

9.0

10.0

11.0

10.0

3.0

20190812

100.0

0.0

0.0

0.0

10.0

4.0

20190813

100.0

0.0

0.0

0.0

10.0

5.0

20190814

100.0

0.0

0.0

0.0

10.0

6.0

20190815

5.0

6.0

8.0

NaN

NaN

NaN

S1

1.0

2.0

3.0

4.0

5.0

6.0

In [67]:

#插入一列

df1.insert(1,"G",df2["E"])

df1

Out[67]:

A

G

B

C

D

E

F

20190809

100.0

10.0

1.0

2.0

3.0

10.0

1.0

20190810

4.0

10.0

5.0

6.0

7.0

10.0

2.0

20190811

8.0

10.0

9.0

10.0

11.0

10.0

3.0

20190812

100.0

10.0

0.0

0.0

0.0

10.0

4.0

20190813

100.0

10.0

0.0

0.0

0.0

10.0

5.0

20190814

100.0

10.0

0.0

0.0

0.0

10.0

6.0

20190815

5.0

NaN

6.0

8.0

NaN

NaN

NaN

In [68]:

g=df1.pop("G")

df1.insert(6,"G",g)

df1

Out[68]:

A

B

C

D

E

F

G

20190809

100.0

1.0

2.0

3.0

10.0

1.0

10.0

20190810

4.0

5.0

6.0

7.0

10.0

2.0

10.0

20190811

8.0

9.0

10.0

11.0

10.0

3.0

10.0

20190812

100.0

0.0

0.0

0.0

10.0

4.0

10.0

20190813

100.0

0.0

0.0

0.0

10.0

5.0

10.0

20190814

100.0

0.0

0.0

0.0

10.0

6.0

10.0

20190815

5.0

6.0

8.0

NaN

NaN

NaN

NaN

In [69]:

#删除列

del df1["G"]

df1

Out[69]:

A

B

C

D

E

F

20190809

100.0

1.0

2.0

3.0

10.0

1.0

20190810

4.0

5.0

6.0

7.0

10.0

2.0

20190811

8.0

9.0

10.0

11.0

10.0

3.0

20190812

100.0

0.0

0.0

0.0

10.0

4.0

20190813

100.0

0.0

0.0

0.0

10.0

5.0

20190814

100.0

0.0

0.0

0.0

10.0

6.0

20190815

5.0

6.0

8.0

NaN

NaN

NaN

In [70]:

df2 = df1.drop(["A","B"],axis=1)

df1

Out[70]:

A

B

C

D

E

F

20190809

100.0

1.0

2.0

3.0

10.0

1.0

20190810

4.0

5.0

6.0

7.0

10.0

2.0

20190811

8.0

9.0

10.0

11.0

10.0

3.0

20190812

100.0

0.0

0.0

0.0

10.0

4.0

20190813

100.0

0.0

0.0

0.0

10.0

5.0

20190814

100.0

0.0

0.0

0.0

10.0

6.0

20190815

5.0

6.0

8.0

NaN

NaN

NaN

In [71]:

df2

Out[71]:

C

D

E

F

20190809

2.0

3.0

10.0

1.0

20190810

6.0

7.0

10.0

2.0

20190811

10.0

11.0

10.0

3.0

20190812

0.0

0.0

10.0

4.0

20190813

0.0

0.0

10.0

5.0

20190814

0.0

0.0

10.0

6.0

20190815

8.0

NaN

NaN

NaN

In [73]:

#删除行

df2=df1.drop([20190810,20190812],axis=0)

df1

Out[73]:

A

B

C

D

E

F

20190809

100.0

1.0

2.0

3.0

10.0

1.0

20190810

4.0

5.0

6.0

7.0

10.0

2.0

20190811

8.0

9.0

10.0

11.0

10.0

3.0

20190812

100.0

0.0

0.0

0.0

10.0

4.0

20190813

100.0

0.0

0.0

0.0

10.0

5.0

20190814

100.0

0.0

0.0

0.0

10.0

6.0

20190815

5.0

6.0

8.0

NaN

NaN

NaN

In [74]:

df2

Out[74]:

A

B

C

D

E

F

20190809

100.0

1.0

2.0

3.0

10.0

1.0

20190811

8.0

9.0

10.0

11.0

10.0

3.0

20190813

100.0

0.0

0.0

0.0

10.0

5.0

20190814

100.0

0.0

0.0

0.0

10.0

6.0

20190815

5.0

6.0

8.0

NaN

NaN

NaN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值