Hello,我是你们人见人爱花见花开的小花。又和大家见面了,今天我们来聊一聊多视图学习利器------CCA。
一 典型相关分析的基本思想
当我们研究两个变量x和y之间的相关关系的时候,相关系数(相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数)是最常用的变量:
其中Sxx为标准差。
那我们如何研究两组变量之间的相关关系呢?比如(X1,X2,X3)与(y1,y2)我们是不应该计算如下矩阵:
,这样把每一个变量之间都求出来了。但是我们这样计算的时候是不是有点繁琐,而且总是会忽略问题的本质。现在我们如果能找出两组变量的各自的某个线性组合,讨论线性组合之间的相关关系,那是不是更为简洁?
现在我们利用主成分分析的思想,可以把多个变量与多个变量之间的相关转化成两个变量之间的相关。例如原来(X1,X2,X3)与(y1,y2)可以分别组合成两个变量U,V.我们假设:
另外