双目摄像头 三维坐标 python_聊聊三维重建-双目立体视觉原理

本文介绍了双目立体视觉的原理,通过视差计算和深度信息,解析了如何利用双目摄像头进行三维重建。讨论了视差、基线和焦距在计算深度中的作用,以及对极几何在对应点匹配中的应用。文章还提到了极线矫正和两种对应点查找方法,并提供了相关资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fcc292068914d83eb51452a5618f84b4.png

前 言


三维重建是个跨多学科的应用领域,围绕不同的尺度大小、不同速度要求、不同精度要求、不同硬件成本等要求发展出了各种各样的技术方案。在这个应用领域,充分体现了,没有最好的设备,只有最合适的方案。在本系列文章中,我尝试解释接触过的不同技术方案,如有错误之处,敬请斧正。

双目立体视觉原理


视差 (Disparity) 及 深度计算

人依靠两只眼睛判断深度(物体离眼睛的距离),具体是如何来判断的呢,我们从小到大似乎并未接受过深度计算的训练。视差(Disparity)是解释原理的基本概念之一。我们可以做个简单的实验,将手指置于双目之间,分别开闭左右眼。怎么样,是不是发现手指不在同一个位置?这就是视差。

8ed878277e66e9927e4b47cb476808bb.png

可以参考上图,当左右相机同时观察三维点时,该点分别投影在左右相机的相平面上,这两个投影点之间的差异就是视差

这个公式看起来简单直观,其实有不少未解释清楚的地方,比如这两个x是在同一个坐标系内么,这两个像平面一定是平行摆放的吗,为什么可以直接减?等等。

要解释清楚这些问题,上图还是略简陋,让我们换张图来解释。

5c251b56c7aff57b585dfbd1f702abcc.png

图中

是三维物体的顶点坐标,其和左右相机光心
的连线与左右相平面的交点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值