ros自己写避障算法_迷雾学术篇|视觉感知的无人机动态避障(下篇)

本文介绍了无人机动态避障的原理和技术流程,包括事件相机与障碍物检测、基于IMU的运动补偿、视觉定位、障碍物分割、速度估计和3D位置计算。通过势能场函数生成推力,确保无人机在避障的同时到达目标。实验展示了算法的处理时间和成功率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PartI : 开篇语

继九九度过一个为期两天的假日(宅宿舍)之后,终得时间来补一下视觉感知的无人机动态避障的下篇。本篇将在上篇机器视觉技术概念的基础上对无人机的动态避障问题描述和具体的技术流程进行展开,最后进行总结和展望。

8921eb4553df0fcccad44272cebaf9cf.gif

PartII : 动态避障问题描述

无人机动态避障的主要目的在于让无人机实时感知周围障碍物的位置和速度(世界位置和速度),且障碍物速度不为零。相比静态避障的核心区别在于,无人机需要实时对障碍物位置进行预测,提前产生控制量,从而躲避障碍物。

  • 静态障碍物

    障碍物位置和形状无法改变;

    障碍物易于被探测。

e3bcb747d0bf27ed0435e0f771e98ecd.png

  • 动态障碍物

    位置和特性处于变化之中;

    难以在较短时间做出反应。

cb9937598cf914344f7c3109453a5c8f.png

那么无人机动态避障的的问题描述就是

<
### ROS虚拟仿真中的避障算法实现 在ROS环境中,通过虚拟仿真来实现机器人的避障功能是一项常见的需求。以下是关于如何利用ROS框架设计并实现避障算法的具体方法。 #### 1. 构建仿真环境 为了实现在RViz或Gazebo中的避障模拟,首先需要定义一个适合的仿真场景。这通常涉及创建地图文件(如`.yaml`格式的地图),并通过导航堆栈加载到仿真器中[^2]。 可以通过以下命令启动基本的仿真环境: ```bash roslaunch turtlebot_gazebo turtlebot_world.launch world_file:=<path_to_your_world> ``` #### 2. 发布激光雷达数据 激光雷达传感器的数据对于避障至关重要。这些数据可以由仿真节点提供,或者通过真实硬件采集后再注入到仿真系统中。假设使用的是TurtleBot模型,则其默认配置已经包含了激光扫描设备的支持。 #### 3. 编控制器逻辑 核心部分在于编能够解析激光雷达距离信息,并据此生成速度指令的C++程序。下面是一个简单的例子: ```cpp #include "ros/ros.h" #include "geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h" float min_distance = 0; void scanCallback(const sensor_msgs::LaserScan::ConstPtr& msg){ min_distance = *min_element(msg->ranges.begin(), msg->ranges.end()); } int main(int argc, char **argv){ ros::init(argc, argv, "obstacle_avoidance_node"); ros::NodeHandle nh; ros::Subscriber sub = nh.subscribe("/scan", 10, scanCallback); ros::Publisher vel_pub = nh.advertise<geometry_msgs::Twist>("/cmd_vel", 10); geometry_msgs::Twist cmd_vel; while (ros::ok()){ if(min_distance < 1.0){ // 如果最小距离小于阈值 cmd_vel.linear.x = 0; // 停止前进 cmd_vel.angular.z = 0.5; // 左转尝试绕过障碍物 } else{ cmd_vel.linear.x = 0.2; // 正常向前移动 cmd_vel.angular.z = 0; // 不旋转 } vel_pub.publish(cmd_vel); ros::spinOnce(); } return 0; } ``` 上述代码展示了如何订阅激光雷达主题 `/scan` 并根据最近的距离调整机器人行为[^1]。 #### 4. 使用AMCL与Move Base扩展能力 如果希望进一步提升复杂度和鲁棒性,可考虑集成全局路径规划模块 `move_base` 和定位服务 `amcl` 。它们共同构成了完整的自主导航解决方案,在动态环境中表现更佳。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值