python鸢尾花散点图_鸢尾花数据散点图

本文通过使用Python的matplotlib和sklearn库,对鸢尾花数据集进行了详细的可视化分析,展示了不同种类鸢尾花在萼片及花瓣尺寸上的分布特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

鸢尾花分为三类:山鸢尾、变色鸢尾和维吉尼亚鸢尾

iris为鸢尾花数据集

import warnings # 引用warnings模块

warnings.filterwarnings('ignore') # 忽略警告消息

from sklearn import datasets # 从sklearn库引用datasets

from matplotlib import pyplot as plt # 从matplotlib库引用pyplot作为plt

import numpy as np # 引用numpy作为np

# 支持中文

plt.rcParams["font.sans-serif"] = ['SimHei'] # 用来正常显示中文标签,SimHei是字体名称,字体必须在系统中存在,字体的查看方式和安装第三部分

plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号

iris = datasets.load_iris() # 调用函数

X = iris.data # 获取iris鸢尾花数据集中的data数据,

y = iris.target # 获取iris鸢尾花数据集中的target数据,其中0代表山鸢尾,1代表变色鸢尾,2代表维吉尼亚鸢尾

X1 = iris.data[: , :2] # 将iris鸢尾花数据集中的data数据进行切片,只取前两列(共四列)

# 绘制萼片散点图(sepal_width*sepal_length)

plt.scatter(X1[y==0, 0],X1[y==0, 1],color='r',marker='+') # 选取y所有为0的+X的第一列

plt.scatter(X1[y==1, 0],X1[y==1, 1],color='g',marker='x') # 选取y所有为1的+X的第一列

plt.scatter(X1[y==2, 0],X1[y==2, 1],color='b',marker='o') # 选取y所有为2的+X的第一列

plt.xlabel('sepal width') # 设置横坐标标注xlabel为sepal width

plt.ylabel('sepal length') # 设置纵坐标标注ylabel为sepal length

plt.title('sepal散点图') # 设置散点图的标题为sepal散点图

plt.show()

sepal萼片散点图.png

X2 = iris.data[: , 2:] # 将iris鸢尾花数据集中的data数据进行切片,只取后两列(共四列)

# 绘制花瓣散点图(petal_width*petal_length)

plt.scatter(X2[y==0, 0],X2[y==0, 1],color='r',marker='+') # 选取y所有为0的+X的第一列

plt.scatter(X2[y==1, 0],X2[y==1, 1],color='g',marker='x') # 选取y所有为1的+X的第一列

plt.scatter(X2[y==2, 0],X2[y==2, 1],color='b',marker='o') # 选取y所有为2的+X的第一列

plt.xlabel('petal width') # 设置横坐标标注xlabel为petal width

plt.ylabel('petal length') # 设置纵坐标标注ylabel为petal length

plt.title('petal散点图') # 设置散点图的标题为petal散点图

plt.show()

petal花瓣散点图.png

由于下两图的结果与第二个图一样,因此可以省略

X3 = np.delete(X,1,axis=1) # 删除X中的第二列

X3 = np.delete(X3,2,axis=1) # 删除X中的第四列

# X3相当于将iris鸢尾花数据集中的data数据进行切片,只取后第一和第三列(共四列)

# 绘制萼片与花瓣的宽散点图(petal_width*petal_width)

plt.scatter(X3[y==0, 0],X3[y==0, 1],color='r',marker='+')

plt.scatter(X3[y==1, 0],X3[y==1, 1],color='g',marker='x')

plt.scatter(X3[y==2, 0],X3[y==2, 1],color='b',marker='o')

plt.show()

萼片与花瓣的宽散点图.png

X4 = np.delete(X,0,axis=1) # 删除第一列

X4 = np.delete(X4,1,axis=1) # 擅长X中的第三列

# X4相当于将iris鸢尾花数据集中的data数据进行切片,只取后第二和第四列(共四列)

# 绘制萼片与花瓣的长散点图(petal_length*petal_length)

plt.scatter(X4[y==0, 0],X4[y==0, 1],color='r',marker='+')

plt.scatter(X4[y==1, 0],X4[y==1, 1],color='g',marker='x')

plt.scatter(X4[y==2, 0],X4[y==2, 1],color='b',marker='o')

plt.show()

萼片与花瓣的长散点图.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值