学习笔记(十四):RNN识别恶意评论

1.数据集的收集清洗

使用Movie Review Data数据集,分为正负两种评论,将评论作为时序数据,取文件的前100个单词作为一个序列,每个单词又由词袋模型进行编码。

MAX_DOCUMENT_LENGTH = 200
EMBEDDING_SIZE = 50

n_words=0


def load_data():
    x=[]
    y=[]
    x1,y1=load_files("../data/movie-review-data/review_polarity/txt_sentoken/pos/",0)
    x2,y2=load_files("../data/movie-review-data/review_polarity/txt_sentoken/neg/", 1)
    x=x1+x2
    y=y1+y2
    return x,y

2.训练

def do_rnn(trainX, testX, trainY, testY):
    global n_words
    # Data preprocessing
    # Sequence padding
    print "GET n_words embedding %d" % n_words


    trainX = pad_sequences(trainX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    testX = pad_sequences(testX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
    # Converting labels to binary vectors
    trainY = to_categorical(trainY, nb_classes=2)
    testY = to_categorical(testY, nb_classes=2)

    # Network building
    net = tflearn.input_data([None, MAX_DOCUMENT_LE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值