第四课:本课内容:
• 0. 导入 NumPy 包
• 1. 创建 NumPy 数组
• 2. 索引和切片
• 3. 读取文件
• 4. 布尔型索引
• 5. 数组的运算
• 6. 常用函数举例
NumPy 是 Numerical Python 的简称,是 Python 科学计算的核心包,也是高性能科学计算和数据分析的基础包。
numpy 特性:
具备功能非常强大的多维数组
具备对整个数组进行快速运算的函数
线性代数计算 随机数生成
可集成 C/C++ 以及 Fortran 等语言
Numpy 数组中的元素只能是同一种数据类型
Numpy 数组的运算,更简洁且高效。
0. 导入 NumPy 包

用 as 语句倒入 numpy 包,后面用简写的 np ,就可以使用了。
1. 创建 NumPy 数组
numpy 的一个重要对象 (object) 是 ndarray, 也称 NumPy 数组
• ndarray 是 Multidimensional Array 的缩写,中文称为多 (multi) 维 (dimensional) 数组(array)。
• 数组可以存储大量数据并在其进行数学运算,我们可以使用数组在一块数据上进行操作从而避免使用循环来操作单个元素。
1-1 一维数组

In[ 2 ] 中是把 1,2,3 这个列表转换成一维数组。赋值定义成 “ arr1d ”。
In[ 3 ] 区分赋值的 “ arr1d ” 类型,返回结果是一个 Numpy 类型的数组。
In[ 4 ] 返回值是 1,代表是一个一维数组。
1-2 二维数组

上图是把一个二维列表转换成一个二维数组,用和一维数组一样的方法。
二维数组就类似一个矩阵
• 0 轴 (axis=0) 是列,也就是垂直方向
• 1 轴 (axis=1) 是行,也就是水平方向
• 矩阵对于数据分析来说,是一个重要的概念,一般用列来代表观测对象的各种属性