混合高斯模型_学习笔记:高斯混合模型

本文介绍了高斯混合模型(GMM)的概念,通过几何理解与概率生成模型的角度探讨GMM。阐述了GMM如何用多个高斯分布进行数据建模,并详细解析了使用EM算法求解模型参数的过程,包括E-step和M-step的详细推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0ea651059e4d21e5f2e1b4f54a82ad02.png

模型理解

已知,在数轴上按照某种概率分布采样,得到了如下图横轴上的红点。依据这些采样点反推出具体的概率分布,这就是我们想要做的事。

010aca46289748e98adaa5346799b79d.png
一维高斯混合模型示例

概率分布不能凭空猜测,我们假设所要求的概率分布是由多个高斯分布混合而成的,所谓“混合”,可以理解成“加权平均”,数学上可以写成

其中,为简便,用

表示高斯分布的表达式,
表示第
个高斯分布的均值向量,
表示第
个高斯分布的协方差矩阵,
表示第
个高斯分布的权重系数,这个系数还满足

有了这种几何理解,再看已知的采样点,可以看到明显的两个密集区域,说明这两个密集区域是概率较大的位置,很有可能是高斯分布的峰值位置,因此可以大致画出两个高斯分布的曲线(如上图蓝线和黄线)。

类似的,也可以想象出一个二维平面中的采样点的分布,由此想像出二维高斯分布的叠加。如下图所示,二维高斯分布用“等高线”的形式大致画出。

0640773116244037dd8505190582e523.png
二维高斯混合模型示例

以上,是对GMM的几何理解。但是高斯分布的维度限制这种几何角度的想象,更进一步理解,需要从概率生成模型的角度理解。高斯混合模型是一种较简单的概率图模型,也是一种简单的生成模型。

c488042969ca55e10d1a874aa32ba745.png
GMM概率生成模型示意图

我们假设采样点是这样得到的

  1. 按照一定的概率分布,选取一个高斯分布
  2. 按照选出的高斯分布来采样

我们假设已经有了

个高斯分布, 根据隐变量
的取值来选择其中一个高斯分布来采样。
是一种离散的概率分布

显然

,接下来计算
,需要充分利用联合概率和边缘概率的关系

这样,模型的定义就更明确了,我们

  • 为观测数据,
  • 为完全数据。

已知

个样本,我们希望可以求出GMM中的
个不同的高斯分布,其中
  • 为模型参数。

于是这个问题就变成了参数求解的问题,由极大似然估计的方法可以得到

其中,对数中包含加法,难以直接优化,需要采用EM算法。


EM算法求解

超越数:学习笔记:期望最大算法​zhuanlan.zhihu.com
d809ed7878565eea6efdf6c1e56deeb7.png

首先明确联合概率、边缘概率和条件概率

首先根据E-step,写出Q函数

解释一下上面的运算过程,首先将概率写成所有样本连乘的形式,然后将对数上的连乘写成外部的连加,接下来将连加符一步步外提,直至提到最外面。

接下来,以

为例,计算内部

解释一下上面的运算过程,首先当前
,从对
的连加中将
单独分类出来,同时连加内部的表达式中与
有关的也要分离出来。

其中

所以

如此,当
取其它值时也有类似的上述计算。所以,对任意确定的
都有

将上式代入到Q函数

解释一下上面的运算过程,就是利用联合概率和条件概率的关系,将复杂表达替换为简便表达的过程

然后根据M-step,对Q函数最大化,优化参数,以求

为例

略去与

无关的项,可以写成

写出拉格朗日函数

对求偏导

其中

代入后

于是得到

,反代入到上面的式子

于是得到

至于

的求解,和上面的方法相同,甚至更简单,因为这两个参数的优化是无约束的,可以直接求偏导求解

其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值