本发明涉及一种基于图像人物面部表情识别的特征提取优化方法,主要利用基于统计特征提取的二维主成分分析法和改进的粒子群算法优化图像矩阵的解,属于图像处理、模式识别和计算机视觉交叉技术应用领域。
背景技术:
特征提取优化方法的目的在于避免在提取主要特征时,过早的陷入早熟收敛而降低了面部表情的精确度。根据图像对人物面部表情的识别,在现在的人工智能的应用中已经成为热点问题,在计算机视觉方面对人物实时的情绪变化分析具有重要作用。对于人脸表情特征的提取主要有以下三种方法:
(1)主成分分析法:最常用的线性降维方法。目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。
(2)粒子群算法:一种基于群体叠代的方法。方法是粒子在解空间中追随最优的粒子进行搜索。其优点在于无需梯度信息、参数少,特别是天然的实数编码特点适合于处理实优化问题。
(3)遗传算法:一种基于进化论自然选择、优胜劣汰、适者生存和物种遗传思想的一种搜索方法。目标是通过模拟生物在自然环境中生存竞争与遗传变异等遗传行为,让问题的解在竞争中得以改进,以求得问题的最优解。
技术实现要素:
技术问题:本发明的目的在于弥补现有对图像面部表情识别中对特征提取的不足,提出了一种基于图像人物面部表情识别的特征提取优化方法。该方法将改进的主成分分析方法与融入了遗传算法的粒子群算法想结合,解决了在对于图像中人物面部表情的细致化提取,又避免了在提取过程中数据量过大和陷入早熟收敛的问题。本发明有效的提取出精确的面部表情特征,具有局部最优化和全局表情多样性的特点。
技术方案:本发明所述一种基于图像人物面部表情识别的特征提取优化方法包括以下步骤:
步骤1):输入m*n的面部图像矩阵A,设置Y=AX,所述m表示图像矩阵的列数,n表示图像矩阵的行数,X是指该图像的投影轴,Y表示图像投影特征向量;
步骤11):设置M和{x1,x2,...,xM},所述M表示训练样本的图像数量,{x1,x2,...,xM}是指训练样本图像中每个图像的