chart控件做实时曲线显示_用PyQt5.QtChart实现动态曲线图

本文介绍了如何使用PyQt5.QtChart库创建实时曲线显示,作为替代静态图表的解决方案。通过这个库,可以方便地展示最近几小时的数据,并进行实时更新,非常适合观察路由的上下载记录。虽然PyQt默认不包含此库,但可以通过pip install pyqtchart进行安装。文章还提供了一张效果图,但未详细说明标题的修改方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前一直用爬虫捉取路由实时上下载的记录用数据库保存,有时可用matplotlib来查看时间与上下传的曲线图,但是静态的,查询的时间段需自行认定,虽然qt的日历类可以比较方便取日期按日期查,但总觉要点有点麻烦,又不想看24小时的数据,截取最近几小时观看数据并实时展示应该是很好的方式,经百度发现pyqt有个很方便的库来展示动态数据,这个库是pyqtchart,安装PyQt时并没有这个库的,需另行安装,pip install pyqtchart安装就可以了,下面就结合代码和实际情况记录一下。

import sqlite3,sys,time
from datetime import datetime
from PyQt5.QtChart import QDateTimeAxis,QValueAxis,QSplineSeries,QChart,QChartView
from PyQt5.QtWidgets import QApplication
from PyQt5.QtGui import QPainter
from PyQt5.QtCore import QDateTime,Qt,QTimer

class ChartView(QChartView,QChart): #原代码如此,继承了两个类,其实去掉QChart也没影响
    def __init__(self, *args, **kwargs):
        super(ChartView, self).__init__(*args, **kwargs)
        self.connect = sqlite3.connect("netdata.db") #数据库,表名为t1,包括时间(年月日时分秒的方式,用sqlite的自动时间截生成的,为方便自己看,转成年月日,结果是个坑),下载速度,上传速度
        self.resize(1500, 500)
        self.setRenderHint(QPainter.Antialiasing)  # 抗锯齿,注释此行曲线很难看
        self.limitminute=240 #设置显示多少分钟内的活动
        self.maxspee
<think>好的,用户想用Qt Designer、PyQt5QtChart结合Python开发一个串口数据读取并显示的应用程序。首先,我需要整理相关组件和步骤。 用户提到了QTDesigner,所以界面设计部分应该用Designer拖拽完成。PyQt5负责将.ui文件转换为Python代码。然后,QtChart用于绘制实时曲线。串口通信部分可能需要QSerialPort,但Python中更常用的是pySerial库,不过PyQt5也有QtSerialPort模块,需要确认两者的兼容性。 接下来,得考虑如何将这些部分结合起来。首先,安装必要的库,比如PyQt5PyQtChart,可能还需要pyqtgraph或者matplotlib,不过用户指定了QtChart,所以重点在QtChart的使用上。引用中的资料提到需要导入QtChart的相关类,比如QChartView和QChart,这可能需要在代码中正确导入。 然后,串口数据的读取。在PyQt5中,可以使用QSerialPort类,或者使用pySerial库。不过考虑到线程问题,串口读取应该在子线程中进行,避免阻塞主界面。引用1提到子线程操作QSerialPort,所以可能需要多线程处理,确保数据接收不影响UI响应。 数据展示方面,需要实时更新曲线图QtChart的QLineSeries可以用来存储数据点,QChartView显示图表。需要定时或事件驱动的方式更新图表,例如接收到新数据时就添加到序列中,并调整视图范围。 步骤分解: 1. 使用Qt Designer设计界面,包含串口配置控件(如波特率选择、端口选择)、开始/停止按钮,以及一个QChartView用于显示图表。 2..ui文件转换为.py文件,并创建主窗口类。 3. 在主程序中初始化串口对象和图表,配置信号槽机制。 4. 实现串口数据的读取,可能在子线程中,使用QThread或者Python的threading模块。 5. 数据解析后,更新到QLineSeries,并刷新图表显示。 需要注意的难点: - 多线程处理时,如何安全地更新UI组件,可能需要使用信号槽来跨线程通信。 - QtChart的配置,如坐标轴、动态滚动效果。 - 串口数据的解析,特别是如果数据是连续字节流,可能需要处理缓冲区,按协议解析有效数据。 用户提供的引用中有关于QtChart的使用示例,比如从PyQt5.QtChart导入QChartView,这需要确保安装正确版本的PyQtChart库。另外,引用3提到使用Qt Designer进行界面设计,所以需要指导用户如何将设计好的界面与功能代码结合。 可能还需要处理串口配置的动态获取,比如自动检测可用端口,这可以通过遍历系统端口实现。同时,错误处理,如串口打开失败、数据接收异常等,也需要考虑。 最后,整合所有部分,测试数据流是否顺畅,从串口读取到界面显示的延迟和性能问题,可能需要优化数据更新的频率,避免界面卡顿。</think>### 分步实现:QTDesigner+PyQt5+QtChart串口数据实时显示 #### 步骤1:安装依赖库 ```bash pip install pyqt5 pyqt5-tools pyserial pyqtchart ``` 注意:PyQtChart可能需要从特定渠道安装[^3] #### 步骤2:使用Qt Designer设计界面 1. 创建包含以下控件: - 串口参数选择框(QComboBox) - 开始/停止按钮(QPushButton) - 图表显示区域(QGraphicsView提升为QChartView) 2.控件对象命名为: ```python serial_port_combo, baudrate_combo, start_btn, chart_view ``` #### 步骤3:转换UI文件为Python代码 ```python from PyQt5.uic import loadUiType ui, _ = loadUiType('main_window.ui') # 自动生成界面类 ``` #### 步骤4:主程序框架搭建 ```python from PyQt5.QtCore import QThread, pyqtSignal from PyQt5.QtSerialPort import QSerialPort from PyQt5.QtChart import QChart, QLineSeries, QValueAxis class SerialThread(QThread): data_received = pyqtSignal(float) # 数据接收信号 def __init__(self): super().__init__() self.serial = QSerialPort() class MainWindow(ui, QMainWindow): def __init__(self): super().__init__() self.setupUi(self) self.init_chart() # 初始化图表 self.serial_thread = SerialThread() ``` #### 步骤5:图表初始化(核心) ```python def init_chart(self): self.series = QLineSeries() self.chart = QChart() self.chart.addSeries(self.series) axisX = QValueAxis() axisX.setRange(0, 100) # X轴显示100个数据点 axisY = QValueAxis() axisY.setRange(-5, 5) # 根据实际数据范围调整 self.chart.addAxis(axisX, Qt.AlignBottom) self.chart.addAxis(axisY, Qt.AlignLeft) self.ui.chart_view.setChart(self.chart) ``` #### 步骤6:实现串口通信 ```python # 在SerialThread类中添加 def run(self): while self.serial.isOpen(): if self.serial.bytesAvailable(): data = self.serial.readAll().data() value = struct.unpack('f', data)[0] # 假设传输float类型数据 self.data_received.emit(value) # 在主窗口类中添加连接方法 def start_reading(self): self.serial_thread.serial.setPortName(self.serial_port_combo.currentText()) self.serial_thread.serial.open(QIODevice.ReadWrite) self.serial_thread.start() ``` #### 步骤7:数据动态更新 ```python # 在主窗口初始化中连接信号 self.serial_thread.data_received.connect(self.update_chart) def update_chart(self, value): self.series.append(len(self.series), value) if len(self.series) > 100: # 保持100个数据点 self.series.remove(0) self.chart.axisX().setRange(max(0, len(self.series)-100), len(self.series)) ``` ### 关键优化点 1. 使用双缓冲机制减少界面闪烁 2. 添加异常处理防止串口意外断开 3. 实现动态坐标轴范围调整 4. 增加数据解析协议支持(如帧头校验)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值