n维空间的欧氏距离公式_距离的总结(欧氏距离)

本文介绍了欧氏距离的概念及其在分类中的应用,详细阐述了从二维到n维空间中欧氏距离的计算公式,并提供了在Matlab中计算欧氏距离的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先要感谢各种距离 - 我只想做一个努力的人 - 博客频道 - CSDN.NET

http://blog.csdn.net/shiwei408/article/details/7602324

在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。​

1. 欧氏距离(EuclideanDistance)

欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。

(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:

摘要(选填

(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:

(3)两个n维向量a(x11,x12,…,x1n)与

b(x21,x22,…,x2n)间的欧氏距离:

也可以用表示成向量运算的形式:

向量形式如何理解?

(4)Matlab计算欧氏距离

Matlab计算距离主要使用pdist函数。

若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。

例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离

X= [0 0 ; 1 0 ; 0 2]

D= pdist(X,'euclidean')

结果:

D=

1.0000   2.0000

2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值