首先要感谢各种距离 - 我只想做一个努力的人 - 博客频道 - CSDN.NET
http://blog.csdn.net/shiwei408/article/details/7602324
在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。
1. 欧氏距离(EuclideanDistance)
欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。
(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:
摘要(选填
(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:
(3)两个n维向量a(x11,x12,…,x1n)与
b(x21,x22,…,x2n)间的欧氏距离:
也可以用表示成向量运算的形式:
向量形式如何理解?
(4)Matlab计算欧氏距离
Matlab计算距离主要使用pdist函数。
若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。
例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离
X= [0 0 ; 1 0 ; 0 2]
D= pdist(X,'euclidean')
结果:
D=
1.0000 2.0000
2.