python 统计图像中矩形的个数_openCV提取图像中的矩形区域

本文介绍了如何使用Python和OpenCV库来检测并提取图像中的矩形区域。通过边缘检测、轮廓查找、面积比较等步骤,找到最大轮廓,并进行投影变换,最终实现对图像中矩形的定位和识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

改编自详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)原文是c++版,我改成了python版,供大家参考学习。

主要思想:边缘检测—》轮廓检测—》找出最大的面积的轮廓—》找出顶点—》投影变换

import numpy as np

import cv2

# 这个成功的扣下了ppt白板

srcPic = cv2.imread('2345.jpg')

length=srcPic.shape[0]

depth=srcPic.shape[1]

polyPic = srcPic

shrinkedPic = srcPic

greyPic = cv2.cvtColor(shrinkedPic, cv2.COLOR_BGR2GRAY)

ret, binPic = cv2.threshold(greyPic, 130, 255, cv2.THRESH_BINARY)

print(binPic.shape)

median = cv2.medianBlur(binPic, 5)

# 进行边缘检测

cannyPic = cv2.Canny(median, 10, 200)

cv2.namedWindow("binary", 0)

cv2.namedWindow("binary2", 0)

cv2.imshow("binary", cannyPic)

# 找出轮廓

contours, hierarchy = cv2.findContours(cannyPic, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)

cv2.imwrite('binary2.png', cannyPic)

cv2.imshow("binary2", cannyPic)

i = 0

maxArea = 0

# 挨个检查看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值