强对偶定理的证明_微观经济理论第三章:KKT、包络定理、对偶定理、

微观经济理论系列的笔记是我为了2021年申请博士而做的准备,我很喜欢经济学,很希望可以成功申请到博士!(如果有相关信息欢迎分享给我呀,如果本文也对你有所帮助的话~)

微观经济理论学到目前,感觉三个定理或者说数学工具非常有用,分别是KKT条件,包络定理和对偶定理,目前来看对这三个定理有了初步了解,目前就足以应对当前的问题了。(当然,之后必须要补充不动点定理——用于证明纳什均衡)。忽然对经济学和数学关系的认识更明白了一些,数学是强有力的工具,是为了更好的为经济学研究服务,而不是使其更复杂,如果感觉更复杂了,可能是数学没有学好。忽然感觉自己之前好笨啊!这三个定理早应该掌握了,为什么到今天才掌握!也欢迎小伙伴补充其他非常有用的定理啊

1、KKT条件(待完善)

太强大了!不管是等式约束还是不等式约束,都可以游刃有余啊!

2、包络定理(待完善)

目前对我来说感觉是神一样的定理,有了它什么谢泼德引理,罗伊恒等式,斯勒茨基方程至少从数学上来说都不是问题了,而且大概get为什么可以用它了,因为间接效用函数和那个支出函数本身就是包络定理里面的间接目标函数~

包络定理的直觉是这样的:首先我们有一个函数

equation?tex=f%28x%2C%5Ctheta%29 ,在这个函数里面,
equation?tex=x 是自变量,而
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值