python求方程组近似解_使用python的sympy解符号方程组后,如何将结果带入之后的符号表达式...

本文介绍了如何使用Python的Sympy库求解符号方程的数值解。通过声明符号、建立表达式、调用solve函数以及使用evalf()获取近似值,展示了求解过程。此外,还提到了利用lambdify()将符号表达式转换为可执行函数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

满意答案

ur51yykufe

2017.11.22

采纳率:52%    等级:12

已帮助:12434人

Sympy是python中非常强大的符号运算库,可以以书写习惯表示数学表达式。下面介绍用Sympy求方程数值解的方法。

下面代码全部在

from sympy import *

init_printing(use_unicode=True) # 按书写习惯输出

下运行。

数学表达式的输入

首先声明符号:

x = symbols('x')

即计算机中的变量x代表数学表达式中的x。在后文输出中所有的x会显示为x。如果x=symbols('x0'),则输入的方程中所有x将在输出中以x0表示。

如果需要希腊字母

l, r = symbol('lambda rho')

l, r将分别以λ,ρ表示。可以在一个表达式中同时声明多个符号。

或者使用var()声明:

var('x')

与上面等效。

声明表达式:

f = (5/x)*(exp(x)-1)-exp(x)

此时若输出f可以看到书写习惯的表达式。由于表达式在markdown下显示不正常,在此不放置示例。注意f的类型是class 'sympy.core.add.Add'

求f(x)=0数值解

因为有的函数零点不止一个,因此在Sympy中解的输出为一个list。使用solve(表达式,自变量符号)可以解析地解方程:

s, = solve(f, x)

这里根据上面f的赋值,得到s为

LambertW(-5e**-5)+5

### 使用 SymPy 进行微分方程组符号Python 中,`SymPy` 是一个强大的符号计算库,提供了多种方法来处理数学表达式,包括微分方程及其组成的系统。对于微分方程组而言,可以通过定义函数变量并利用 `dsolve()` 函数尝试获取其析形式。 #### 定义符号与函数对象 为了表示未知函数以及它们相对于独立变量的变化率,在开始之前需先声明必要的符号量和对应的函数实体: ```python from sympy import Function, symbols, Eq, dsolve t = symbols('t') # 时间或其他独立参数作为输入变量 x, y = symbols('x y', cls=Function) # 创建两个依赖于 t 的函数 x(t), y(t)[^3] ``` 这里创建了时间 `t` 和两个随时间变化的状态变量 `x`, `y`,其中后者被指定为类 `Function` 实例以便后续用于构建导数关系。 #### 构建微分方程模型 接着基于实际物理过程或理论推导建立具体的动态平衡条件,形成一组联立的一阶常微分方程(ODEs),例如洛伦兹吸引子简化版本如下所示: ```python dx_dt = Eq(x(t).diff(t), 10 * (y(t)-x(t))) # dx/dt 方程式 dy_dt = Eq(y(t).diff(t), 28*x(t) - y(t) - x(t)*z(t)) # dy/dt 方程式 dz_dt = Eq(z(t).diff(t), -8/3*z(t) + x(t)*y(t)) # dz/dt 方程式 ``` 上述代码片段展示了三个相互关联的第一阶线性和非线性 ODE 描述了状态空间内的轨迹演化规律;值得注意的是第三个方程引入了一个新的未定义函数 z(t),因此还需要进一步补充完整该系统的描述。 #### 调用 dsolve 方法获得通 一旦完成了整个系统的设定,则可以直接调用 `dsolve()` 来试图找出满足给定初始条件下所有可能存在的特路径: ```python solution_x = dsolve(dx_dt, x(t)) solution_y = dsolve(dy_dt.subs({x(t): solution_x.rhs}), y(t)) # 对于更复杂的多维情况建议采用其他数值积分方案而非继续嵌套代入法取闭合形式答 ``` 然而需要注意的是,并不是所有的复杂动力学体系都能够得到显式的封闭型答案,特别是在涉及强耦合作用或多体交互作用的情况下更是如此。此时推荐转而考虑应用数值仿真技术如 SciPy 库中的 odeint 或 solve_ivp 接口来进行近似模拟研究[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值